The gecko in the photo is sticking upside down to a smooth ceiling. The remarkable adhesion might be due to static electricity. Gecko feet are covered with microscopic hairs. When these hairs rub against a surface, charges separate, with the hair developing a positive charge and negative charge forming below the surface. There is an attractive force between the separated charges. This is an effective means of adhering to a surface, but it comes at a cost: Two planes of charge are like two charged plates of a capacitor, which takes energy to charge. Doubling the amount of charge on each surface increases the attractive force, but also increases the energy required to separate the charge. By what factor does this energy increase?
The gecko in the photo is sticking upside down to a smooth ceiling. The remarkable adhesion might be due to static electricity. Gecko feet are covered with microscopic hairs. When these hairs rub against a surface, charges separate, with the hair developing a positive charge and negative charge forming below the surface. There is an attractive force between the separated charges. This is an effective means of adhering to a surface, but it comes at a cost: Two planes of charge are like two charged plates of a capacitor, which takes energy to charge. Doubling the amount of charge on each surface increases the attractive force, but also increases the energy required to separate the charge. By what factor does this energy increase?
Trending now
This is a popular solution!
Step by step
Solved in 3 steps