The Gas company bought a new machine. The weight of metal components in it are normally distributed with a mean of 14lbs and standard deviation 0.92lbs. Components are accepted if their weights are inside the limits 13.7 lbs to 14.42lbs. From a sample 34 components   What is the probability that a component sampled randomly from the production will be accepted? What is the probability that a component sampled randomly from the production will be rejected?

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question

The Gas company bought a new machine. The weight of metal components in it are normally distributed with a mean of 14lbs and standard deviation 0.92lbs. Components are accepted if their weights are inside the limits 13.7 lbs to 14.42lbs. From a sample 34 components

 

  1. What is the probability that a component sampled randomly from the production will be accepted?
  2. What is the probability that a component sampled randomly from the production will be rejected?
E(X)=ExP(X = x)
Var( X) = E(X*)-[E(X)f
1.
alr
2.
3.
Binomial Distribution
P(X = x) =" C,p'(1- p) ,x= 0, 1, 2, 3.…..n
E(X) = np
and Var(X) = pa
4.
Poisson Distribution
P(X =x) =
,x = 0, 1, 2, 3 .
x!
x = number of successes
i = average number of successes
X -1.96<
Vn
- <u< X +1.964
Vn
5.
Sample size for mean
Σ.
2 =
6.
Sample size for proportion
saple vaniance
= p(1- p)
n-1
E
7.
Single sample mean
Difference between sample means t std. error
8. Single sample Proportion
Difference between sample proportion + std. error
p-オ
7(1-)
9.
(Р. — Р.) - D,
+
10.
Transcribed Image Text:E(X)=ExP(X = x) Var( X) = E(X*)-[E(X)f 1. alr 2. 3. Binomial Distribution P(X = x) =" C,p'(1- p) ,x= 0, 1, 2, 3.…..n E(X) = np and Var(X) = pa 4. Poisson Distribution P(X =x) = ,x = 0, 1, 2, 3 . x! x = number of successes i = average number of successes X -1.96< Vn - <u< X +1.964 Vn 5. Sample size for mean Σ. 2 = 6. Sample size for proportion saple vaniance = p(1- p) n-1 E 7. Single sample mean Difference between sample means t std. error 8. Single sample Proportion Difference between sample proportion + std. error p-オ 7(1-) 9. (Р. — Р.) - D, + 10.
Area between O and a
0,00
0.02
0.03
0.04
0.05
0.07
0.09
0.0 0.0000
0.0040
0.0080
0.0120
0.0160
0.0199
0.0239
0.0279
0.0319
0.0359
0.1 0.0398
0.0438
0.0557
0.0636
0.0478
0.0517
0.0596
0.0675
0.0714
0.0753
0.2 0.0793
0.0832
0.0871
0.0910
0.0948
0.1026
0.0987
0.1064
0.1103
0.1141
0.3 0.1179
0.1217
0.1331
0.1368
0.1480
0.1255
0.1293
0.1406
0.1443
0.1517
04 0.1554
0.1628
0.1664
0.1700
0.1808
0.1844
0.1591
0.1736
0.1772
0.1879
0.5 0.1915
0.1950
0.1985
0.2019
0.2088
0.2123
0.2190
0.2224
0.2157
0.6 0.2257
0.2291
0.2324
0.2357
0.2389
0.2422
0.2454
0.2486
0.2517
0.2549
0.7 0.2580
0.2611
0.2642
0.2673
0.2704
0.2734
0.2764
0.2794
0.2823
0.2852
0.8 0.2881
0.2910
0.2939
0.2967
0.2995
0.3023
0.3051
0.3078
0.3106
0.3133
0.9 0.3159
0.3186
0.3212
0.3238
0.3264
0.3289
0.3315
0.3340
0.3365
0.3389
1.0 0.3413
0.3508
03531
0.3621
0.3438
0.3461
0.3485
0.3554
0.3577
0.3599
1.1 0.3643
0.3665
0.3686
0.3729
0.3830
0.3708
0.3749
0.3770
0.3790
0.3810
1.2 0.3849
0.3869
0.3888
0.3907
0.3925
0.3962
0.3980
0.3997
0.3944
0.4015
1.3 0.4032
0.4049
0.4066
0.4082
0.4099
0.4115
0.4131
0.4147
0.4162
0.4177
14 0.4192
0.4207
0.4222
0.4236
0.4251
0.4279
0.4292
0.4306
0.4265
0.4319
1.5 0.4332
0.4345
0.4357
0.4370
0.4382
0.4394
0.4406
0.4429
0.4418
0.4441
1.6 0.4452
0.4463
0.4474
0.4484
0.4495
0.4505
0.4515
0.4535
0.4525
0.4545
1.7 0.4554
0.4564
0.4573
0.4582
0.4591
0.4599
0.4608
0.4625
0.4616
0.4633
1.8 0.4641
0.4649
0.4656
0.4664
0.4671
0.4678
0.4686
04693
0.4699
0.4706
1.9 0.4713
0.4719
0.4726
0.4732
0.4738
0.4744
0.4750
0.4756
0.4761
0.4767
2.0 0.4772
0.4783
0.4788
0.4793
0.4798
0.4803
0.4808
0.4812
0.4817
0.4778
2.1 0.4821
0.4826
0.4830
0.4834
0.4838
0.4846
0.4850
0.4854
0.4857
0.4842
2.2 0.4861
0.4864
0.4871
0.4875
0.4878
0.4881
0.4887
0.4890
0.4868
0.4884
2.3 0.4893
0.4896
0.4898
0.4901
0.4904
0.4906
0.4909
0.4911
0.4913
0.4916
24 0.4918
0.4920
0.4922
0.4925
0.4927
0.4931
0.4934
0.4929
0.4932
0.4936
2.5 0.4938
2.6 0.4953
0.4940
0.4941
0.4943
0.4945
0.4946
0.4948
0.4949
0.4951
0.4952
0.4955
0.4956
0.4957
0.4959
0.4960
0.4961
0.4962
0.4963
0.4964
2.7 0.4965
0.4966
0.4967
0.4968
0.4969
0.4970
0.4971
0.4972
0.4973
0.4974
2.8 0.4974
0.4975
0.4976
0.4977
0.4977
0.4978
0.4979
0.4979
0.4980
0.4981
2.9 0.4981
0.4982
0.4982
0.4983
0.4984
0.4984
0.4985
0.4985
0.4986
0.4986
3.0 0.4987
0.4987
0.4988
0.4989
0.4989
0.4989
0.4990
0.4990
0.4987
0.4988
Transcribed Image Text:Area between O and a 0,00 0.02 0.03 0.04 0.05 0.07 0.09 0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 0.1 0.0398 0.0438 0.0557 0.0636 0.0478 0.0517 0.0596 0.0675 0.0714 0.0753 0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.1026 0.0987 0.1064 0.1103 0.1141 0.3 0.1179 0.1217 0.1331 0.1368 0.1480 0.1255 0.1293 0.1406 0.1443 0.1517 04 0.1554 0.1628 0.1664 0.1700 0.1808 0.1844 0.1591 0.1736 0.1772 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2088 0.2123 0.2190 0.2224 0.2157 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 1.0 0.3413 0.3508 03531 0.3621 0.3438 0.3461 0.3485 0.3554 0.3577 0.3599 1.1 0.3643 0.3665 0.3686 0.3729 0.3830 0.3708 0.3749 0.3770 0.3790 0.3810 1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3962 0.3980 0.3997 0.3944 0.4015 1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 14 0.4192 0.4207 0.4222 0.4236 0.4251 0.4279 0.4292 0.4306 0.4265 0.4319 1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4429 0.4418 0.4441 1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4535 0.4525 0.4545 1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4625 0.4616 0.4633 1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 04693 0.4699 0.4706 1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 2.0 0.4772 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 0.4778 2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4846 0.4850 0.4854 0.4857 0.4842 2.2 0.4861 0.4864 0.4871 0.4875 0.4878 0.4881 0.4887 0.4890 0.4868 0.4884 2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 24 0.4918 0.4920 0.4922 0.4925 0.4927 0.4931 0.4934 0.4929 0.4932 0.4936 2.5 0.4938 2.6 0.4953 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 3.0 0.4987 0.4987 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 0.4987 0.4988
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON