The function that describes this oscillation in time is of the form Y (t) = eat (2 cos(bt) + sin(bt)), where x a + bi is the solution with b > 0 to the following equation mx + rx+ k = 0. In this equation, m represents the mass in kg, k is the spring constant and measures the spring's elasticity, r measures the friction damping effects. (a) Suppose the mass weighs 10 kg, the spring constant k is 2 and r is 4. Find a and b by solving the quadratic equation. (b) Substitute a and b in the expression for Y(t). (c) Find the initial extension of the spring A = Y(0).
The function that describes this oscillation in time is of the form Y (t) = eat (2 cos(bt) + sin(bt)), where x a + bi is the solution with b > 0 to the following equation mx + rx+ k = 0. In this equation, m represents the mass in kg, k is the spring constant and measures the spring's elasticity, r measures the friction damping effects. (a) Suppose the mass weighs 10 kg, the spring constant k is 2 and r is 4. Find a and b by solving the quadratic equation. (b) Substitute a and b in the expression for Y(t). (c) Find the initial extension of the spring A = Y(0).
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Concept explainers
Power Operation
Power operation is topic of algebra in Math. It is use to represent repeated multiplication. Very big number and very small number can be easily express using power operation. Power operation is useful in many fields. In space engineering, it helps in representing the distance or size of particular heavenly body. In medical field, it is used to represent very small size. In medical field it helps to mention size of bacteria or virus.
Exponents
The exponent or power or index of a variable/number is the number of times that variable/number is multiplied by itself.
Question
Please show full steps

Transcribed Image Text:/Assignment3.pdf
Y=-A
Figure 1: A mass-spring system.
Reference: https://upload.wikimedia.org/wikipedia/commons/8/8d/Oscillation-terms.svg.
The function that describes this oscillation in time is of the form
Y (t) = eat (2 cos(bt) + sin(bt)),
where x = a + bi is the solution with b > 0 to the following equation
mx? + rx + k = 0.
In this equation, m represents the mass in kg, k is the spring constant and measures the
spring's elasticity, r measures the friction damping effects.
(a) Suppose the mass weighs 10 kg, the spring constant k is 2 and r is 4.
Find a and b by solving the quadratic equation.
(b) Substitute a and b in the expression for Y(t).
(c) Find the initial extension of the spring A = Y(0).
(d) Plot Y(t) for positive times. You are allowed to use any graphical software including
Wolfram Alpha for this purpose.
(e) What do you observe? What will happen for a very large t?
4. Population dynamics.
In the ski resort, the amount of people visiting changes every day of the year. In the cold
o neonle coming, while in the warm period very few are visiting.

Transcribed Image Text:3. Dynamics of a spring.
Consider the behaviour of a mass-spring system (see Figure 1 below). If it is at equilib-
rium, it remains in a rest position. Once it receives a force, it will start oscillating. In this
problem, we will study the dynamics of these oscillations. We will take as reference the center
of mass and we consider Y = 0 when the system is at rest. We then compress the spring to
Y = A and study the behaviour of Y in time.
I
Y=A
Y=0
-A
Y=-A
Figure 1: A mass-spring system.
Reference: https://upload.wikimedia.org/wikipedia/commons/8/8d/Oscillation-terms.svg.
The function that describes this oscillation in time is of the form
Y (t) = et (2 cos(bt) + sin(bt)),
where a = a + bi is the solution with b> 0 to the following equation
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Recommended textbooks for you

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON

Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press

College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education