The function f(x,y) = 6xy has an absolute maximum value and absolute minimum value subject to the constraint 3x² +3y² - 5xy=121. Use Lagrange multipliers to find these values. Find the gradient of f(x,y)=6xy. Vf(x,y) = (6y,6x) Find the gradient of g(x,y)=3x² +3y² -5xy-121. Vg(x,y) = (6x-5y,6y-5x) Write the Lagrange multiplier conditions. Choose the correct answer below. A. 6y=2(6x-5y), 6x = 2(6y-5x), 3x² + 3y² -5xy - 121=0 O B. 6x=2(6x-5y), 6y=2(6y-5x), 3x² + 3y²-5xy-121=0 OC. 6xy=2(6x-5y), 6xy=2(6y-5x), 3x² + 3y² -5xy-121=0 O D. 6x=2(6x-5y), 6y=2(6y-5x), 6xy=0 The absolute maximum value is (…)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Optimizing a Function Using Lagrange Multipliers**

The function \( f(x, y) = 6xy \) has an absolute maximum value and an absolute minimum value subject to the constraint \( 3x^2 + 3y^2 - 5xy = 121 \). Use Lagrange multipliers to find these values.

**Steps:**

1. **Find the gradient of \( f(x, y) = 6xy \):**
   \[
   \nabla f(x, y) = \langle 6y, 6x \rangle
   \]

2. **Find the gradient of \( g(x, y) = 3x^2 + 3y^2 - 5xy - 121 \):**
   \[
   \nabla g(x, y) = \langle 6x - 5y, 6y - 5x \rangle
   \]

3. **Write the Lagrange multiplier conditions. Choose the correct answer below:**

   A. \(\ 6y = \lambda(6x - 5y), \ 6x = \lambda(6y - 5x), \ 3x^2 + 3y^2 - 5xy - 121 = 0\)

   B. \(\ 6x = \lambda(6x - 5y), \ 6y = \lambda(6y - 5x), \ 3x^2 + 3y^2 - 5xy - 121 = 0\)

   C. \(\ 6xy = \lambda(6x - 5y), \ 6xy = \lambda(6y - 5x), \ 3x^2 + 3y^2 - 5xy - 121 = 0\)

   D. \(\ 6x = \lambda(6x - 5y), \ 6y = \lambda(6y - 5x), \ 6xy = 0\)

   - **Correct Answer: A**

4. **Result:**

   The absolute maximum value is \(\square\). (This space is left for users to compute the numerical value based on algebraic manipulation.)

This educational page guides users through finding extreme values of a function under a constraint using the method of Lagrange multip
Transcribed Image Text:**Optimizing a Function Using Lagrange Multipliers** The function \( f(x, y) = 6xy \) has an absolute maximum value and an absolute minimum value subject to the constraint \( 3x^2 + 3y^2 - 5xy = 121 \). Use Lagrange multipliers to find these values. **Steps:** 1. **Find the gradient of \( f(x, y) = 6xy \):** \[ \nabla f(x, y) = \langle 6y, 6x \rangle \] 2. **Find the gradient of \( g(x, y) = 3x^2 + 3y^2 - 5xy - 121 \):** \[ \nabla g(x, y) = \langle 6x - 5y, 6y - 5x \rangle \] 3. **Write the Lagrange multiplier conditions. Choose the correct answer below:** A. \(\ 6y = \lambda(6x - 5y), \ 6x = \lambda(6y - 5x), \ 3x^2 + 3y^2 - 5xy - 121 = 0\) B. \(\ 6x = \lambda(6x - 5y), \ 6y = \lambda(6y - 5x), \ 3x^2 + 3y^2 - 5xy - 121 = 0\) C. \(\ 6xy = \lambda(6x - 5y), \ 6xy = \lambda(6y - 5x), \ 3x^2 + 3y^2 - 5xy - 121 = 0\) D. \(\ 6x = \lambda(6x - 5y), \ 6y = \lambda(6y - 5x), \ 6xy = 0\) - **Correct Answer: A** 4. **Result:** The absolute maximum value is \(\square\). (This space is left for users to compute the numerical value based on algebraic manipulation.) This educational page guides users through finding extreme values of a function under a constraint using the method of Lagrange multip
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,