The Fourier series representation of the following function { X f(x + 4) = f(x) is f(x)≈1 - Σm=1 π² f(x) = -X cos((2m-1) Tx/2) (2m-1)² - 2 < x < 0, 0 ≤ x < 2;

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please answer all part correctly
### Fourier Series Representation

The Fourier series representation of the function:

\[ 
f(x) = 
\begin{cases} 
-x, & \text{for } -2 < x < 0, \\
x, & \text{for } 0 \leq x < 2;
\end{cases} 
\]

is given by:

\[ 
f(x+4) = f(x) 
\]

\[ 
f(x) \approx 1 - \frac{8}{\pi^2} \sum_{m=1}^{\infty} \frac{\cos((2m-1)\pi x/2)}{(2m-1)^2}. 
\]

#### Exercise

a) **Task:** State why (by using Fourier theorem) the Fourier series representation given above is a valid representation of \( f(x) \) on \(-2 < x < 2\).

b) **Task:** Show from the Fourier series representation given in part (a) that

\[ 
\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \ldots = \sum_{m=1}^{\infty} \frac{1}{(2m-1)^2}. 
\]
Transcribed Image Text:### Fourier Series Representation The Fourier series representation of the function: \[ f(x) = \begin{cases} -x, & \text{for } -2 < x < 0, \\ x, & \text{for } 0 \leq x < 2; \end{cases} \] is given by: \[ f(x+4) = f(x) \] \[ f(x) \approx 1 - \frac{8}{\pi^2} \sum_{m=1}^{\infty} \frac{\cos((2m-1)\pi x/2)}{(2m-1)^2}. \] #### Exercise a) **Task:** State why (by using Fourier theorem) the Fourier series representation given above is a valid representation of \( f(x) \) on \(-2 < x < 2\). b) **Task:** Show from the Fourier series representation given in part (a) that \[ \frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \ldots = \sum_{m=1}^{\infty} \frac{1}{(2m-1)^2}. \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,