The following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four Aces, four Kings, four Queens, four 10s, etc., down to four 2s in each deck. You draw two cards from a standard deck of 52 cards without replacing the first one before drawing the second. (a) Are the outcomes on the two cards independent? Why? (b) Find P(eight on 1st card and seven on 2nd). (c) Find P(seven on 1st card and eight on 2nd). (d) Find the probability of drawing an eight and a seven in either order.
Permutations and Combinations
If there are 5 dishes, they can be relished in any order at a time. In permutation, it should be in a particular order. In combination, the order does not matter. Take 3 letters a, b, and c. The possible ways of pairing any two letters are ab, bc, ac, ba, cb and ca. It is in a particular order. So, this can be called the permutation of a, b, and c. But if the order does not matter then ab is the same as ba. Similarly, bc is the same as cb and ac is the same as ca. Here the list has ab, bc, and ac alone. This can be called the combination of a, b, and c.
Counting Theory
The fundamental counting principle is a rule that is used to count the total number of possible outcomes in a given situation.
The following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four Aces, four Kings, four Queens, four 10s, etc., down to four 2s in each deck.
You draw two cards from a standard deck of 52 cards without replacing the first one before drawing the second.
(a) Are the outcomes on the two cards independent? Why?
(b) Find P(eight on 1st card and seven on 2nd).
(c) Find P(seven on 1st card and eight on 2nd).
(d) Find the probability of drawing an eight and a seven in either order.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images