The following ODES have been proposed as a model of an epidemic: ds -aSI dt dI aSI – rl dt dR rl dt where S = the susceptible individuals, I = the infected, R = the recovered, a = the infection rate, and r = the recovery rate. A city has 10,000 %3D people, all of whom are susceptible. (a) If a single infectious individual enters the city at t = 0, compute the progression of the epidemic until the number of infected individuals falls below 10. Use the following parameters: a = 0.002/(person week) and r = 0.15/d. Develop time-series plots of all the state variables. Also generate a phaseplane plot of S versus / versus R.
The following ODES have been proposed as a model of an epidemic: ds -aSI dt dI aSI – rl dt dR rl dt where S = the susceptible individuals, I = the infected, R = the recovered, a = the infection rate, and r = the recovery rate. A city has 10,000 %3D people, all of whom are susceptible. (a) If a single infectious individual enters the city at t = 0, compute the progression of the epidemic until the number of infected individuals falls below 10. Use the following parameters: a = 0.002/(person week) and r = 0.15/d. Develop time-series plots of all the state variables. Also generate a phaseplane plot of S versus / versus R.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please answer the poin (a) with excel
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,