The flux of F across S is TU 2п с 1/6 F [³6² -(a sin(p) cos(0)i + a sin(p) sin(0)j + a cos(p) k) a³ • (a² sin²(p) cos(0)i + a² ) ₁ + a² ( [] F. ds = = с Jo TU 2π 2π - L™ 1² C a³(sin³(y) + sin(y) cos²(y)) de do sin(p) de do Thus, the flux does not depend on the radius a. k) de do

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The flux of F across S is
 
 
S
F · dS
 = 
?
 
0
2?
 
0
c
a3
 (a sin(?) cos(?) i + a sin(?) sin(?) j + a cos(?) k)
                  · (a2 sin2(?) cos(?) i + a2 
 
 
 
 
 
 
 
 j + a2 
 
 
 
 
 
 
 
  k) d? d?
 
   = 
c
a3
?
 
0
2?
 
0
a3(sin3(?) + sin(?) cos2(?)) d? d?
 
   =  c
?
 
0
2?
 
0
sin(?) d? d?
 
   = 
 
 
 
 .
Thus, the flux does not depend on the radius a.
The flux of F across S is
*2π C
16₁
F. ds =
TU
с
-(a sin(y) cos(0)i + a sin(y) sin(0)j + a cos(p) k)
)j + a² (
• (a² sin²(y) cos(0)i + a²
="²a³(sin³ (p) + sin(4) cos²(4)) de de
Jo
π
*2π
- ST 6² -
C
sin (4)
de do
Thus, the flux does not depend on the radius a.
k) de do
Transcribed Image Text:The flux of F across S is *2π C 16₁ F. ds = TU с -(a sin(y) cos(0)i + a sin(y) sin(0)j + a cos(p) k) )j + a² ( • (a² sin²(y) cos(0)i + a² ="²a³(sin³ (p) + sin(4) cos²(4)) de de Jo π *2π - ST 6² - C sin (4) de do Thus, the flux does not depend on the radius a. k) de do
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,