The flux of F across S is TU 2п с 1/6 F [³6² -(a sin(p) cos(0)i + a sin(p) sin(0)j + a cos(p) k) a³ • (a² sin²(p) cos(0)i + a² ) ₁ + a² ( [] F. ds = = с Jo TU 2π 2π - L™ 1² C a³(sin³(y) + sin(y) cos²(y)) de do sin(p) de do Thus, the flux does not depend on the radius a. k) de do
The flux of F across S is TU 2п с 1/6 F [³6² -(a sin(p) cos(0)i + a sin(p) sin(0)j + a cos(p) k) a³ • (a² sin²(p) cos(0)i + a² ) ₁ + a² ( [] F. ds = = с Jo TU 2π 2π - L™ 1² C a³(sin³(y) + sin(y) cos²(y)) de do sin(p) de do Thus, the flux does not depend on the radius a. k) de do
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
The flux of F across S is
|
= |
|
|||||||||||
· (a2 sin2(?) cos(?) i + a2
|
|||||||||||||
|
|||||||||||||
= |
|
||||||||||||
|
|||||||||||||
= | c
|
||||||||||||
|
|||||||||||||
= |
|
Thus, the flux does not depend on the radius a.

Transcribed Image Text:The flux of F across S is
*2π C
16₁
F. ds =
TU
с
-(a sin(y) cos(0)i + a sin(y) sin(0)j + a cos(p) k)
)j + a² (
• (a² sin²(y) cos(0)i + a²
="²a³(sin³ (p) + sin(4) cos²(4)) de de
Jo
π
*2π
- ST 6² -
C
sin (4)
de do
Thus, the flux does not depend on the radius a.
k) de do
Expert Solution

Step 1
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

