The "fill" problem is important in many industries, such as those making cereal, toothpaste, beer, and so on. If an industry claims that it is selling 500 grams of its product in a container, it must have a mean greater than 500 grams, or it allows a very small percentage of the containers to have less than 500 grams. Suppose the content X of a container has a distribution N(501, o²). Then ơ = , such that P(X < 500) = 0.008. Use the table of %3D the cdf of standard normal distribution (click to see). Round your answer to 4 decimal places, if necessary. Choose the option 'None among the others', if your answer is different from all the others. 50 0.6143 0.3774 0.6442 0.4149 None among the others

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

Q10

The "fill" problem is important in many industries, such as those making cereal,
toothpaste, beer, and so on. If an industry claims that it is selling 500 grams of its
product in a container, it must have a mean greater than 500 grams, or it allows
a very small percentage of the containers to have less than 500 grams. Suppose
the content X of a container has a distribution N(501, o2). Then o =
, such that P(X < 500) = 0.008. Use the table of
the cdf of standard normal distribution (click to see). Round your answer to 4
decimal places, if necessary. Choose the opt
'None among the others', if your
answer is different from all the others.
50
0.6143
0.3774
0.6442
0.4149
None among the others
Transcribed Image Text:The "fill" problem is important in many industries, such as those making cereal, toothpaste, beer, and so on. If an industry claims that it is selling 500 grams of its product in a container, it must have a mean greater than 500 grams, or it allows a very small percentage of the containers to have less than 500 grams. Suppose the content X of a container has a distribution N(501, o2). Then o = , such that P(X < 500) = 0.008. Use the table of the cdf of standard normal distribution (click to see). Round your answer to 4 decimal places, if necessary. Choose the opt 'None among the others', if your answer is different from all the others. 50 0.6143 0.3774 0.6442 0.4149 None among the others
P(X < a) = | p(t)dt
X - N(0, 1)
-3
-2
1
3.
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.0
0.5000
0.5040
0.5080
0.5120
0.5160
0.5199
0.5239
0.5279
0.5319
0.5359
0.1
0.5398
0.5438
0.5478
0.5517
0.5557
0.5596
0.5636 0.5675
0.5714
0.5753
0.2
0.5793
0.5832
0.5871
0.5910
0.5948
0.5987
0.6026
0.6064
0.6103
0.6141
0.3
0.6179
0.6217
0.6255
0.6293
0.6331
0.6368
0.6406 0.6443 0.6480
0.6517
0.4
0.6554
0.6591
0.6628
0.6664
0.6700
0.6736
0.6772
0.6808
0.6844
0.6879
0.5
0.6915 0.6950 0.6985
0.7019
0.7054
0.7088
0.7123
0.7157
0.7190
0.7224
0.6
0.7257
0.7291
0.7324
0.7357 0.7389
0.7422
0.7454 0.7486 0.7517 0.7549
0.7
0.7580
0.7611
0.7642
0.7673 0.7704 0.7734
0.7764 0.7794 0.7823 0.7852
0.7995
0.8264
0.8
0.7881
0.7910
0.7939
0.7967
0.8023
0.8051
0.8078
0.8106
0.8133
0.9
0.8159
0.8186 0.8212
0.8238
0.8289
0.8315 0.8340 0.8365
0.8389
1.0
0.8413
0.8438
0.8461
0.8485 0.8508 0.8531
0.8554 0.8577 0.8599
0.8621
1.1
0.8643
0.8665
0.8686
0.8708
0.8729
0.8749
0.8770
0.8790
0.8810
0.8830
1.2
0.8849
0.8869
0.8888
0.8907 0.8925
0.8944
0.8962 0.8980 0.8997
0.9015
1.3
0.9032
0.9049
0.9066
0.9082 0.9099
0.9115
0.9131
0.9147 0.9162 0.9177
1.4
0.9192
0.9207
0.9222
0.9236 0.9251
0.9265
0.9279
0.9292 0.9306
0.9319
1.5
0.9332
0.9345
0.9357
0.9370
0.9382
0.9394
0.9406
0.9418
0.9429
0.9441
1.6
0.9452
0.9463 0.9474 0.9484
0.9495
0.9505
0.9515
0.9525 0.9535 0.9545
1.7 0.9554
0.9564
0.9573
0.9582
0.9591
0.9599
0.9608 0.9616
0.9625 0.9633
1.8
0.9641
0.9649
0.9656
0.9664
0.9671
0.9678
0.9686
0.9693
0.9699
0.9706
1.9
0.9713 0.9719
0.9726
0.9732 0.9738 0.9744
0.9750
0.9756
0.9761 0.9767
2.0 0.9772 0.9778
0.9783
0.9788 0.9793
0.9798
0.9803 0.9808 0.9812 0.9817
2.1
0.9821
0.9826
0.9830
0.9834
0.9838
0.9842
0.9846
0.9850 0.9854
0.9857
2.2
0.9861
0.9864 0.9868
0.9871
0.9875
0.9878
0.9881
0.9884 0.9887
0.9890
2.3
0.9893
0.9896 0.9898
0.9901
0.9904 0.9906
0.9909
0.9911
0.9913 0.9916
2.4
0.9918
0.9920 0.9922
0.9925
0.9927
0.9929
0.9931
0.9932
0.9934
0.9936
2.5
0.9938
0.9940 0.9941
0.9943
0.9945
0.9946
0.9948 0.9949
0.9951
0.9952
2.6
0.9953
0.9955
0.9956
0.9957 0.9959
0.9960
0.9961
0.9962
0.9963
0.9964
2.7
0.9965
0.9966
0.9967
0.9968
0.9969
0.9970
0.9971
0.9972
0.9973
0.9974
2.8
0.9974
0.9975
0.9976
0.9977
0.9977
0.9978
0.9979
0.9979
0.9980
0.9981
2.9
0.9981
0.9982 0.9982
0.9983
0.9984
0.9984
0.9985 0.9985
0.9986
0.9986
3.0
0.9987 0.9987 0.9987
0.9988
0.9988
0.9989
0.9989
0.9989
0.9990
0.9990
Transcribed Image Text:P(X < a) = | p(t)dt X - N(0, 1) -3 -2 1 3. 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.7995 0.8264 0.8 0.7881 0.7910 0.7939 0.7967 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman