The figure shows a trolley of mass 10 kg that can move freely along a smooth fixed horizontal rail driven by a horizontal applied force, F. Pivoted to the trolley at A is a rigid link AB of mass 2 kg, length 1.5 m and inertia 0.38 kgm2 about the centre of gravity of the link, which is located at the midpoint. The link is driven by a motor mounted on the trolley which applies an anticlockwise torque T to the link. When the link is at 30° to the horizontal and the mechanism is undergoing the motion shown in the figure determine the magnitude of the reaction force acting on the link at point A in the x and y directions. The positive sense for x and y is given in the figure, and gravity can be assumed to be 10 m/s2. y+ O O O O F X Rail B Rx = 6.94 N Ry= 21.7 N Rx = 14.29 N Ry = 10.15 N Rx = 19.62 N Ry= 22.48 N Rx = 32.05 N Ry = 45.00 N 30⁰ w = 2 rad/s a = 1 rad/s² v = 0.5 m/s a = 0.5 m/s²

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
The figure shows a trolley of mass 10 kg that can move freely along a smooth fixed horizontal rail driven by a horizontal applied force, F. Pivoted to the trolley at A is a rigid link AB of mass 2 kg, length 1.5 m and inertia 0.38 kgm² about the centre of
gravity of the link, which is located at the midpoint. The link is driven by a motor mounted on the trolley which applies an anticlockwise torque T to the link.
When the link is at 30° to the horizontal and the mechanism is undergoing the motion shown in the figure determine the magnitude of the reaction force acting on the link at point A in the x and y directions. The positive sense for x and y is given in the
figure, and gravity can be assumed to be 10 m/s².
O
O
O
F
Rail
B
Rx = 6.94 N
Ry = 21.7 N
Rx = 14.29 N
Ry = 10.15 N
Rx = 19.62 N
Ry= 22.48 N
Rx = 32.05 N
Ry = 45.00 N
30⁰
T
w = 2 rad/s
a = 1 rad/s²
v = 0.5 m/s
a = 0.5 m/s²
g
Transcribed Image Text:The figure shows a trolley of mass 10 kg that can move freely along a smooth fixed horizontal rail driven by a horizontal applied force, F. Pivoted to the trolley at A is a rigid link AB of mass 2 kg, length 1.5 m and inertia 0.38 kgm² about the centre of gravity of the link, which is located at the midpoint. The link is driven by a motor mounted on the trolley which applies an anticlockwise torque T to the link. When the link is at 30° to the horizontal and the mechanism is undergoing the motion shown in the figure determine the magnitude of the reaction force acting on the link at point A in the x and y directions. The positive sense for x and y is given in the figure, and gravity can be assumed to be 10 m/s². O O O F Rail B Rx = 6.94 N Ry = 21.7 N Rx = 14.29 N Ry = 10.15 N Rx = 19.62 N Ry= 22.48 N Rx = 32.05 N Ry = 45.00 N 30⁰ T w = 2 rad/s a = 1 rad/s² v = 0.5 m/s a = 0.5 m/s² g
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Design of Bearings
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY