The figure shows a telephone wire hanging between two poles at x = -20 and x = 20. The wire hangs in the shape of a catenary described by the equation given. y = c + a cosh (+) -20 0₁ 20 Q If the length of the wire between the two poles is 41 ft and the lowest point of the wire must be 22 ft above the ground, how high up (in ft) on each pole should the wire be attached? (Round your answer to two decimal places.) 31.1 X ft

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question

do not copy from chegg

The figure shows a telephone wire hanging between two poles at x = -20 and x = 20. The wire hangs in the shape of a catenary described by the equation given.
sh(1)
a
IH
y = c + a cosh
-20
20
If the length of the wire between the two poles is 41 ft and the lowest point of the wire must be 22 ft above the ground, how high up (in ft) on each pole should the wire be attached? (Round your answer to two decimal places.)
31.1
X ft
Transcribed Image Text:The figure shows a telephone wire hanging between two poles at x = -20 and x = 20. The wire hangs in the shape of a catenary described by the equation given. sh(1) a IH y = c + a cosh -20 20 If the length of the wire between the two poles is 41 ft and the lowest point of the wire must be 22 ft above the ground, how high up (in ft) on each pole should the wire be attached? (Round your answer to two decimal places.) 31.1 X ft
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,