The figure shown is a cross section of a concrete column that is loaded uniformly in compression. Determine: A. The average compressive stress in kips/in2 in the concrete if the load is equal to 3200 kips.  B. Determine the coordinates of the point where the resultant load must act in order to produce uniform normal stress in the column. Note: Draw the Free Body Diagram, include the units/dimensions, use the proper formula and round-off all the answers and final answers to 3 decimal places

Architectural Drafting and Design (MindTap Course List)
7th Edition
ISBN:9781285165738
Author:Alan Jefferis, David A. Madsen, David P. Madsen
Publisher:Alan Jefferis, David A. Madsen, David P. Madsen
Chapter42: Common Commercial Construction Materials
Section: Chapter Questions
Problem 42.11Q
icon
Related questions
Question

The figure shown is a cross section of a concrete column that is loaded uniformly in compression. Determine:

A. The average compressive stress in kips/in2 in the concrete if the load is equal to 3200 kips. 

B. Determine the coordinates of the point where the resultant load must act in order to produce uniform normal stress in the column.

Note: Draw the Free Body Diagram, include the units/dimensions, use the proper formula and round-off all the answers and final answers to 3 decimal places.

Fundamental Equations of Mechanics of Materials
Axial Load
Shear
Normal Stress
Average direct shear stress
V
A
Tavg
A
Displacement
P(x)dx
Transverse shear stress
8 =
A (x)E
VQ
It
PL
AE
Shear flow
VQ
q = Tt =
δ- α ΔΤL
= a
Torsion
Stress in Thin-Walled Pressure Vessel
Shear stress in circular shaft
Тр
Cylinder
pr
pr
2t
where
Sphere
pr
= solid cross section
01 = 02 =
2t
J =
- (c,“ – c,")
Stress Transformation Equations
tubular cross section
0x + 0y
O, – 0,
+
y
cos 20 +
Power
sin 20
2
P = Tw = 2™fT
Ox – 0y
Angle of twist
sin 20 + Try cos 20
2
T(x)dx
Principal Stress
J(x)G
Txy
tan 26,
TL
$ = E
JG
(ox – 0,)/2
Ox + 0y
1,2
0,- 0,
y
Average shear stress in a thin-walled tube
+ Tây
2
T
Tavg
21A m
Maximum in-plane shear stress
(0, – 0,)/2
Shear Flow
tan 20,
T
Txy
q = Tavg!
2A m
Tmax
+ Txy
2
Bending
Ox + 0y
O avg
Normal stress
Мy
Absolute maximum shear stress
I
σ.
max
Unsymmetric bending
Tabs
max
for ởmax, O min same sign
2
Mạy
max
Ở min
tan a
Tabs
max
for omax, Omin Opposite signs
tan 0
2
Geometric Properties of Area Elements
Material Property Relations
Poisson's ratio
-A = bh
Elat
1, = bh
!, = hb
long
C
%3D
Generalized Hooke's Law
:[0, - vo, + o.)]
Rectangular area
%3D
Ex
E
[0, – v(o, + 0,)]
-A = bh
E
Ez
[0. - v(0, + 0,)]
E
1
Tyz, Yzx
1
%3D
Yxy
Txy Yyz
Triangular area
where
E
G =
2(1 + v)
A =
a
(9 + D)w :
Relations Between w, V, M
h
(2a + b\
a + b
dM
= V
dx
dV
b
w(x),
dx
Trapezoidal area
Elastic Curve
1
M
-A =
EI
d*v
EI
=w(x)
!, = }ar*
%3D
d'v
El
= V(x)
Semicircular area
dv
El
dx?
M(x)
-A = Tr²
Buckling
Critical axial load
1, = fart
!, = fart
T²EI
Per
(KL)²
Critical stress
VIJA
O cr
Circular area
(KL/r)²*
Secant formula
ес
P
Ở max
1 +
sec
A
V EA
žab
A =
Energy Methods
Conservation of energy
U. = U;
zero slope
Strain energy
N²L
Semiparabolic area
U; =
2AE
constant axial load
"M²dx
U, =
bending moment
%3D
2EI
A =
U; =
transverse shear
%3D
2GA
zero slope -
pLT°dx
torsional moment
%3D
2GJ
Exparabolic area
Transcribed Image Text:Fundamental Equations of Mechanics of Materials Axial Load Shear Normal Stress Average direct shear stress V A Tavg A Displacement P(x)dx Transverse shear stress 8 = A (x)E VQ It PL AE Shear flow VQ q = Tt = δ- α ΔΤL = a Torsion Stress in Thin-Walled Pressure Vessel Shear stress in circular shaft Тр Cylinder pr pr 2t where Sphere pr = solid cross section 01 = 02 = 2t J = - (c,“ – c,") Stress Transformation Equations tubular cross section 0x + 0y O, – 0, + y cos 20 + Power sin 20 2 P = Tw = 2™fT Ox – 0y Angle of twist sin 20 + Try cos 20 2 T(x)dx Principal Stress J(x)G Txy tan 26, TL $ = E JG (ox – 0,)/2 Ox + 0y 1,2 0,- 0, y Average shear stress in a thin-walled tube + Tây 2 T Tavg 21A m Maximum in-plane shear stress (0, – 0,)/2 Shear Flow tan 20, T Txy q = Tavg! 2A m Tmax + Txy 2 Bending Ox + 0y O avg Normal stress Мy Absolute maximum shear stress I σ. max Unsymmetric bending Tabs max for ởmax, O min same sign 2 Mạy max Ở min tan a Tabs max for omax, Omin Opposite signs tan 0 2 Geometric Properties of Area Elements Material Property Relations Poisson's ratio -A = bh Elat 1, = bh !, = hb long C %3D Generalized Hooke's Law :[0, - vo, + o.)] Rectangular area %3D Ex E [0, – v(o, + 0,)] -A = bh E Ez [0. - v(0, + 0,)] E 1 Tyz, Yzx 1 %3D Yxy Txy Yyz Triangular area where E G = 2(1 + v) A = a (9 + D)w : Relations Between w, V, M h (2a + b\ a + b dM = V dx dV b w(x), dx Trapezoidal area Elastic Curve 1 M -A = EI d*v EI =w(x) !, = }ar* %3D d'v El = V(x) Semicircular area dv El dx? M(x) -A = Tr² Buckling Critical axial load 1, = fart !, = fart T²EI Per (KL)² Critical stress VIJA O cr Circular area (KL/r)²* Secant formula ес P Ở max 1 + sec A V EA žab A = Energy Methods Conservation of energy U. = U; zero slope Strain energy N²L Semiparabolic area U; = 2AE constant axial load "M²dx U, = bending moment %3D 2EI A = U; = transverse shear %3D 2GA zero slope - pLT°dx torsional moment %3D 2GJ Exparabolic area
24 in 20 in.→
– 24
20 in.
16'in.
8 in.
--
8 in.
Transcribed Image Text:24 in 20 in.→ – 24 20 in. 16'in. 8 in. -- 8 in.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
System of units
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Architectural Drafting and Design (MindTap Course…
Architectural Drafting and Design (MindTap Course…
Civil Engineering
ISBN:
9781285165738
Author:
Alan Jefferis, David A. Madsen, David P. Madsen
Publisher:
Cengage Learning
Solid Waste Engineering
Solid Waste Engineering
Civil Engineering
ISBN:
9781305635203
Author:
Worrell, William A.
Publisher:
Cengage Learning,