The exhaust duct from a heater has an inside diameter of 114.3 mm with ceramic walls 6.4 mm thick. The average k = 1.52 W/mK. Outside this wall, an insulation of rock wool 102 mm thick is installed. The thermal conductivity of the rock wool is k = 0.046+1.56*10-4T (°C) (W/mK). The inside surface temperature of the ceramic is T1= 588.7 K, and the outside surface temperature of the insulation is T3= 311 K. Calculate the heat loss for 1.5 m of duct and the interface temperature T2between the ceramic and the insulation.Assumesteady heat transfer.Hint: The correct value of km for insulation is that evaluated at the mean temperature of T2+T3/2. Hence, for the first trial assume a mean temperature of, say, 448 K. Then, calculate the heat loss and T2. Using this new T2, calculate a new mean temperature and proceed as before.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question

The exhaust duct from a heater has an inside diameter of 114.3 mm with ceramic walls 6.4 mm thick. The average k = 1.52 W/mK. Outside this wall, an insulation of rock wool 102 mm thick is installed. The thermal conductivity of the rock wool is k = 0.046+1.56*10-4T (°C) (W/mK). The inside surface temperature of the ceramic is T1= 588.7 K, and the outside surface temperature of the insulation is T3= 311 K. Calculate the heat loss for 1.5 m of duct and the interface temperature T2between the ceramic and the insulation.Assumesteady heat transfer.Hint: The correct value of km for insulation is that evaluated at the mean temperature of T2+T3/2. Hence, for the first trial assume a mean temperature of, say, 448 K. Then, calculate the heat loss and T2. Using this new T2, calculate a new mean temperature and proceed as before.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Energy transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON