The exhaust duct from a heater has an inside diameter of 114.3 mm with ceramic walls 6.4 mm thick. The average k =1.52 W/m· K. Outside this wall, an insulation or rock wool 102 mm thick is installed. The thermal conductivity of the rock wool is k = 0.046 + 1.56 × 10+ T°C (W/m · K). The inside surface temperature of the ceramic is T1 = 588.7 K, and the outside surface temperature of the insulation is 311 K. Calculate the heat loss for 1.5 m of duct and the interface temperature T2 between the ceramic and the insulation. [Hint: The correct value of km for the insulation is that evaluated at the mean temperature of (T2 + T3)/2. Hence, for the first trial assume a mean temperature of, say, 448 K. Then calculate the heat loss and T2 Using this new T2, calculate a new mean temperature and proceed as before.]
The exhaust duct from a heater has an inside diameter of 114.3 mm with ceramic walls 6.4 mm thick. The average k =1.52 W/m· K. Outside this wall, an insulation or rock wool 102 mm thick is installed. The thermal conductivity of the rock wool is k = 0.046 + 1.56 × 10+ T°C (W/m · K). The inside surface temperature of the ceramic is T1 = 588.7 K, and the outside surface temperature of the insulation is 311 K. Calculate the heat loss for 1.5 m of duct and the interface temperature T2 between the ceramic and the insulation. [Hint: The correct value of km for the insulation is that evaluated at the mean temperature of (T2 + T3)/2. Hence, for the first trial assume a mean temperature of, say, 448 K. Then calculate the heat loss and T2 Using this new T2, calculate a new mean temperature and proceed as before.]
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
6. Make a diagram and show the step-by-step process. Do not use shortcut methods. Make it as detailed as it can be.
Encode (not hand-written)! DO NOT COPY CHEGG'S ANSWER
![The exhaust duct from a heater has an inside diameter of 114.3 mm with ceramic walls 6.4 mm thick.
The average k=1.52 W/m: K. Outside this wall, an insulation or rock wool 102 mm thick is installed.
The thermal conductivity of the rock wool is k= 0.046 + 1.56 x 104 T°C (W/m · K). The inside surface
temperature of the ceramic is T1 = 588.7 K, and the outside surface temperature of the insulation is 311
K. Calculate the heat loss for 1.5 m of duct and the interface temperature Ti between the ceramic and the
insulation. [Hint: The correct value of km for the insulation is that evaluated at the mean temperature of
(T2 + T3)/2. Hence, for the first trial assume a mean temperature of, say, 448 K. Then calculate the heat
loss and T2 Using this new T2, calculate a new mean temperature and proceed as before.]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F15c83f2c-5911-450d-b072-c8dc0ca8df5b%2F24eed2e5-c247-49ae-a489-cc9cd8dab9e8%2F6adsgcj_processed.png&w=3840&q=75)
Transcribed Image Text:The exhaust duct from a heater has an inside diameter of 114.3 mm with ceramic walls 6.4 mm thick.
The average k=1.52 W/m: K. Outside this wall, an insulation or rock wool 102 mm thick is installed.
The thermal conductivity of the rock wool is k= 0.046 + 1.56 x 104 T°C (W/m · K). The inside surface
temperature of the ceramic is T1 = 588.7 K, and the outside surface temperature of the insulation is 311
K. Calculate the heat loss for 1.5 m of duct and the interface temperature Ti between the ceramic and the
insulation. [Hint: The correct value of km for the insulation is that evaluated at the mean temperature of
(T2 + T3)/2. Hence, for the first trial assume a mean temperature of, say, 448 K. Then calculate the heat
loss and T2 Using this new T2, calculate a new mean temperature and proceed as before.]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY