The equation x³ = cos x has one root. Choose ALL possible iteration formulae that can be used to find this root out of the following: Xn+1 = √√Cos Xn cos³ Xn xn Xn+1 cos² Xn Xn² Xn+1 = (cos-1 xn)3 Ăn+1 = cos-1 Xn+1 = Xn Xn+1 = Xn Xn+1 = Xn+1 = Xn+1 = - Xn+1 = X³+cOS X 3X²+COS X Xn³+cos Xn 3X²-cos Xn Cos³ Xn cos Xn+Xn²+Xn Xn²+Xn+1 cos Xn+Xn²-Xn Xn²+Xn-1 3 ·¹x³ Xn+1 = Xn+1 Xn+1 = (cos x)² Xn+1 = cos xn Xn+1 = Xn Xn+1 = (cos¯¹xñµ)² Xn+1=Xn — Xn+1 = -√√/cos³ Xn Xn+1 = cos Xn¬Xn²-Xn Xn²-Xn-1 cOS Xñ−Xñ ²+Xn In Xn+1 n³+cos Xn 3x²-sin xn Xn+1 = COS¯¹ Xn³-cos Xn 3Xn +sin Xn cos Xn 2 Xn

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The equation x³ = cos x has one root. Choose ALL possible iteration formulae that can
be used to find this root out of the following:
Xn+1 = ³√√cos Xn
cos³ Xn
Xn+1 =
cos² Xn
Xn²
Xn+1 = (cos-1Xn)3 Xn+1 = C0S-1
Xn+1 = Xn
Xn+1=Xn
Xn+1 =
Xn+1 =
Xn+1 =
Xn+1 =
Xn³+cos Xn
3X²+COS X
Xn³+cos Xn
3Xn²-cos Xn
cos³ Xn
cos Xn+Xn²+Xn
Xn²+Xn+1
cos Xn+Xn²-Xn
Xn²+Xn-1
¹Xn³
Xn+1 =
Xn+1 =
Xn+1 =
(cos x)
Xn+1 =
cos Xn
Xn²
cos xn
Xn³
Xn+1 = (cos-1xn) Xn+1 = cos-1
Xn+1 = Xn
Xn+1 = Xn –
Xn+1==√
Xn+1 =
Xn²+cos Xn
3x²-sin Xn
cos Xn-Xn²-Xn
Xn²-Xn-1
COS Xn-Xn²+Xn
Xn²-Xn+1
Xn-cos Xn
3x²+sin Xn
cos3
Xn
2
Transcribed Image Text:The equation x³ = cos x has one root. Choose ALL possible iteration formulae that can be used to find this root out of the following: Xn+1 = ³√√cos Xn cos³ Xn Xn+1 = cos² Xn Xn² Xn+1 = (cos-1Xn)3 Xn+1 = C0S-1 Xn+1 = Xn Xn+1=Xn Xn+1 = Xn+1 = Xn+1 = Xn+1 = Xn³+cos Xn 3X²+COS X Xn³+cos Xn 3Xn²-cos Xn cos³ Xn cos Xn+Xn²+Xn Xn²+Xn+1 cos Xn+Xn²-Xn Xn²+Xn-1 ¹Xn³ Xn+1 = Xn+1 = Xn+1 = (cos x) Xn+1 = cos Xn Xn² cos xn Xn³ Xn+1 = (cos-1xn) Xn+1 = cos-1 Xn+1 = Xn Xn+1 = Xn – Xn+1==√ Xn+1 = Xn²+cos Xn 3x²-sin Xn cos Xn-Xn²-Xn Xn²-Xn-1 COS Xn-Xn²+Xn Xn²-Xn+1 Xn-cos Xn 3x²+sin Xn cos3 Xn 2
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,