The equation of a quartic function with zeros -5, 1, and 3 with an order 2 is: * O f(x) = k(x - 3)(x + 5)(x - 1)^2 O f(x) = k(x - 1)(x + 5)(x - 3)^2 O f(x) = k(x + 1)(x - 5)(x + 3)^2 O f(x) = k(x - 1)(x + 3)(x + 5)^2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The equation of a quartic function with zeros -5, 1, and 3 with an order 2 is:
O f(x) = k(x - 3)(x + 5)(x - 1)^2
O f(x) = k(x - 1)(x + 5)(x - 3)^2
O f(x) = k(x + 1)(x - 5)(x + 3)^2
O f(x) = k(x - 1)(x + 3)(x + 5)^2
Transcribed Image Text:The equation of a quartic function with zeros -5, 1, and 3 with an order 2 is: O f(x) = k(x - 3)(x + 5)(x - 1)^2 O f(x) = k(x - 1)(x + 5)(x - 3)^2 O f(x) = k(x + 1)(x - 5)(x + 3)^2 O f(x) = k(x - 1)(x + 3)(x + 5)^2
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Roots
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,