The enthalpy of a system is given by the equation H = U + PV where U is the internal energy, P = pressure, and V = volume. In addition, the internal energy, U = Q + w where Q is the heat and W is the work. Suppose we want to find the rate of change in the enthalpy at constant pressure of 1.25 atm, what is the value when heat is absorbed by the system at a rate of 45 J/s and work is done by the system at a rate of 100 J/s when the change of volume is rated at 35 x 105 m/s? 1. What is the change in heat with respect to time? 2. What is the change in internal energy of the system with respect to time? 3. What is the change in enthalpy of the system with respect to time?
The enthalpy of a system is given by the equation H = U + PV where U is the internal energy, P = pressure, and V = volume. In addition, the internal energy, U = Q + w where Q is the heat and W is the work. Suppose we want to find the rate of change in the enthalpy at constant pressure of 1.25 atm, what is the value when heat is absorbed by the system at a rate of 45 J/s and work is done by the system at a rate of 100 J/s when the change of volume is rated at 35 x 105 m/s? 1. What is the change in heat with respect to time? 2. What is the change in internal energy of the system with respect to time? 3. What is the change in enthalpy of the system with respect to time?
Related questions
Question

Transcribed Image Text:Problem 2:
The enthalpy of a system is given by the equation H = U + PV where U is the internal energy, P = pressure, and V = volume.
In addition, the internal energy, U = Q + W where Q is the heat and W is the work. Suppose we want to find the rate of
change in the enthalpy at constant pressure of 1.25 atm, what is the value when heat is absorbed by the system at a rate
of 45 J/s and work is done by the system at a rate of 100 J/s when the change of volume is rated at 35 x 105 m/s?
1. What is the change in heat with respect to time?
2. What is the change in internal energy of the system with respect to time?
3. What is the change in enthalpy of the system with respect to time?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
