The elementary matrices in sequential order that converted a coefficient matrix, A of a system of linear equations into an identity matrix are shown below. [1 0 0] 1 0, E3 1l 1 1 01 1 E1 -0.25 1 , E, = 10 -0.5 0 Lo -1.2 11 [1 0 = 0 1 0.4861, E5 E4 Lo o [1 0 -0.8333] [1 , E6 Lo 0.8 01 이1 11 = 10 1 = 10 1 lo o 1 [1 0 [0.25 0 0] 0, Eg 0 1] 01 = 0 0.8 0, Eg Lo E, = 1 = 10 1 Lo o 0.2778] The inverse of the coefficient matrix, A is: 0.2222 0.3333 |-0.2778 0.3333 -0.1111] 0.3889 0.0556 -0.3334 0.2778 0.2222 0.3333 -0.1111] |-0.2778 -0.0556 -0.3334 0.3333 0.3889 0.2778 0.2222 0.3333 -0.1111] -0.2778 0.3333 -0.3889 -0.0556 -0.3334 0.2778 0.2222 0.3333 -0.1111] Correct Answer:-0.2778 0.3333 0.3889 -0.0556 -0.3334 0.2778 0.2222 -0.3333 -0.1111] |-0.2778 0.3333 0.3889 -0.0556 -0.3334 0.2778

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The elementary matrices in sequential order that converted a coefficient matrix,
A of a system of linear equations into an identity matrix are shown below.
[1
0 0]
1 0, E3
1l
1
1
01
1
E1
-0.25 1
, E,
= 10
-0.5 0
Lo -1.2 11
[1 0
= 0 1 0.4861, E5
E4
Lo o
[1 0
-0.8333]
[1
, E6
Lo
0.8 01
이1
11
= 10 1
= 10
1
lo o
1
[1 0
[0.25 0 0]
0, Eg
0 1]
01
= 0 0.8 0, Eg
Lo
E, =
1
= 10 1
Lo o 0.2778]
The inverse of the coefficient matrix, A is:
0.2222
0.3333
|-0.2778 0.3333
-0.1111]
0.3889
0.0556
-0.3334
0.2778
0.2222
0.3333
-0.1111]
|-0.2778
-0.0556 -0.3334
0.3333
0.3889
0.2778
0.2222
0.3333
-0.1111]
-0.2778
0.3333
-0.3889
-0.0556 -0.3334
0.2778
0.2222
0.3333
-0.1111]
Correct Answer:-0.2778
0.3333
0.3889
-0.0556 -0.3334
0.2778
0.2222
-0.3333 -0.1111]
|-0.2778
0.3333
0.3889
-0.0556 -0.3334
0.2778
Transcribed Image Text:The elementary matrices in sequential order that converted a coefficient matrix, A of a system of linear equations into an identity matrix are shown below. [1 0 0] 1 0, E3 1l 1 1 01 1 E1 -0.25 1 , E, = 10 -0.5 0 Lo -1.2 11 [1 0 = 0 1 0.4861, E5 E4 Lo o [1 0 -0.8333] [1 , E6 Lo 0.8 01 이1 11 = 10 1 = 10 1 lo o 1 [1 0 [0.25 0 0] 0, Eg 0 1] 01 = 0 0.8 0, Eg Lo E, = 1 = 10 1 Lo o 0.2778] The inverse of the coefficient matrix, A is: 0.2222 0.3333 |-0.2778 0.3333 -0.1111] 0.3889 0.0556 -0.3334 0.2778 0.2222 0.3333 -0.1111] |-0.2778 -0.0556 -0.3334 0.3333 0.3889 0.2778 0.2222 0.3333 -0.1111] -0.2778 0.3333 -0.3889 -0.0556 -0.3334 0.2778 0.2222 0.3333 -0.1111] Correct Answer:-0.2778 0.3333 0.3889 -0.0556 -0.3334 0.2778 0.2222 -0.3333 -0.1111] |-0.2778 0.3333 0.3889 -0.0556 -0.3334 0.2778
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,