The electrons inside a system of two coaxial magnetic mirrors can be described by the loss-cone distribution function given by, 3/2 1 - () - ()-(3-1) = exp a²a² ƒ(v) = where v₁ and v denote the perpendicular and parallel components of the electron velocities with respect to the magnetic bottle axis and a² = 2k³T₁/m₂ and a² = 2k³T||/m₂, respectively. a) Determine the number density of electrons No in the magnetic bottle b) Calculate the average perpendicular and parallel energies.
The electrons inside a system of two coaxial magnetic mirrors can be described by the loss-cone distribution function given by, 3/2 1 - () - ()-(3-1) = exp a²a² ƒ(v) = where v₁ and v denote the perpendicular and parallel components of the electron velocities with respect to the magnetic bottle axis and a² = 2k³T₁/m₂ and a² = 2k³T||/m₂, respectively. a) Determine the number density of electrons No in the magnetic bottle b) Calculate the average perpendicular and parallel energies.
Related questions
Question

Transcribed Image Text:The electrons inside a system of two coaxial magnetic mirrors can be described by the loss-cone
distribution function given by,
ƒ(v)
3/2
- (4)
=
1
a²a||
(2) CIP (-4-1)
exp
where v₁ and V|| denote the perpendicular and parallel components of the electron velocities with
respect to the magnetic bottle axis and a² = 2k³T₁/m₂ and a² = 2k³T|/m₂, respectively.
a) Determine the number density of electrons No in the magnetic bottle
b) Calculate the average perpendicular and parallel energies.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
