The eigenfunctions for the BVP: 00 2 u(0, t)=0 u(1, t)=0, are X,(x)=sin(nTtx); n=1, 2,.. Then f,) = %3D O a. f,1)=2t 22 (-1y*1 b. с. 2t(-1)" d. t(-1)"+1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The eigenfunctions for the BVP:
u,=u xx +
0<x<1,
t>0
2
u(0, t)=0
u(1, t)=0,
are X,(x)= sin(n Ttx); n 1, 2,
Then f,) D
%3D
O a. f,1)=2t
Ob.
「。の=
2 f (-1y*1
2t (-1)"
f,) =
с.
d.
t(-1)+1
е.
2t(-1)+1
f,) =
P(-1y*1
f,) =
Of.
O 9. f,1)=22
Transcribed Image Text:The eigenfunctions for the BVP: u,=u xx + 0<x<1, t>0 2 u(0, t)=0 u(1, t)=0, are X,(x)= sin(n Ttx); n 1, 2, Then f,) D %3D O a. f,1)=2t Ob. 「。の= 2 f (-1y*1 2t (-1)" f,) = с. d. t(-1)+1 е. 2t(-1)+1 f,) = P(-1y*1 f,) = Of. O 9. f,1)=22
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Matrix Eigenvalues and Eigenvectors
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,