The distribution of heights of a certain breed of terrier has a mean of 71 centimeters and a standard deviation of 10 centimeters, whereas the distribution of heights of a certain breed of poodle has a mean of 28 centimeters with a standard deviation of 6 centimeters. Assuming that the sample means can be measured to any degree of accuracy, find the probability that the sample mean for a random sample of heights of 64 terriers exceeds the sample mean for a random sample of heights of 100 poodles by at most 44.2 centimeters. Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. The probability is ☐ (Round to four decimal places as needed.) Areas under the Normal Curve Area Areas under the Normal Curve .03 .04 -1.2 -1.1 0.3015 2 .00 .01 .02 -3.4 0.0003 0.0003 0.0003 0.0003 0.0003 -3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 -3.3 -3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 -3.2 0.0006 -3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 -3.1 0.0007 -3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 -3.0 -2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 -2.9 -2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0019 0.0021 -2.8 0.0020 0.0035 0.0033 0.0031 0.0030 0.0029 -2.7 0.0027 0.0034 0.0032 0.0028 0.0026 -2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 -2.6 -2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 -2.5 -2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 -2.4 -2.3 0.0107 0.0104 0.0099 0.0102 0.0091 0.0096 0.0094 0.0087 0.0089 0.0084 -2.3 -2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 -2.2 -2.1 0.0179 0.0166 0.0162 0.0158 0.0154 0.0150 0.0143 -2.1 0.0174 0.0170 0.0146 -2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 -2.0 -1.9 0.0287 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 0.0281 -1.9 0.0274 0.0359 -1.8 0.0344 0.0351 0.0336 0.0329 0.0307 0.0322 0.0301 0.0314 0.0294 -1.8 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 -1.7 0.0392 0.0384 0.0375 0.0367 -1.7 -1.6 0.0548 0.0516 0.0537 0.0465 0.0526 0.0455 -1.6 0.0505 0.0495 0.0485 0.0475 -1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 -1.5 0.0808 0.0793 0.0764 -1.4 0.0721 0.0708 0.0778 0.0681 0.0749 -1.4 0.0735 0.0694 -1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 -1.3 0.1131 0.1151 0.1112 0.1093 0.1056 0.1075 0.1038 0.1003 0.0985 -1.2 0.1020 0.1335 0.1314 0.1357 0.1251 0.1292 0.1271 0.1230 0.1210 0.1190 -1.1 0.1170 0.1539 0.1423 -1.0 0.1587 0.1562 0.1515 0.1492 0.1469 0.1446 0.1379 0.1401 -1.0 -0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 -0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.2389 -0.7 0.2420 0.2266 0.2358 0.2236 0.2327 0.2296 0.2206 0.2177 -0.6 0.2743 0.2709 0.2643 0.2578 0.2546 0.2514 0.2483 0.2676 0.2611 -0.5 0.3085 0.3050 0.2946 0.2912 0.2981 0.2810 0.2877 0.2843 -0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 -0.3 0.3783 0.3745 0.3707 0.3632 0.3821 0.3669 0.3594 0.3557 0.3520 -0.2 0.4207 0.4090 0.4168 0.4129 0.4052 0.4013 0.3974 0.3936 0.3897 0.4602 0.4522 0.4483 0.4443 -0.1 0.4364 0.4562 0.4325 0.4404 0.4286 0.4960 0.4801 -0.0 0.4721 0.5000 0.4920 0.4880 0.4840 0.4761 0.4681 .00 .01 .02 .03 .04 .05 .06 .07 .08 .05 .06 .07 .08 .09 Z .00 0.0003 0.0003 0.0003 0.0003 0.0002 -3.4 0.0 0.1 0.0004 0.0006 0.2 0.3 0.4 .01 .02 .03 .04 .05 .06 .07 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.0 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.1 0.6103 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6141 0.2 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6480 0.6406 0.6443 0.3 0.6517 0,6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.4 .08 .09 名 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 -2.7 0.7 0.7257 0.7580 0.8 0.7881 0.9 0.8159 1.0 0.8413 0.9726 0.7291 0.7324 0.7357 0.7611 0.7673 0.7642 0.7910 0.7939 0.7967 0.8186 0.8212 0.8238 0.8438 0.8461 0.8485 0.8508 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.9066 0.9099 1.3 0.9131 0.9032 0.9049 0.9082 0.9115 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 1.5 0.9345 0.9357 0.9370 0.9332 0.9382 0.9394 0.9406 0.9463 0.9505 1.6 0.9515 0.9452 0.9474 0.9484 0.9495 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 1.8 0.9656 0.9664 0.9641 0.9649 0.9671 0.9678 1.9 0.9713 0.9719 0.9732 0.9738 0.9744 0.5 0.7389 0.7422 0.7454 0.7486 0.7549 0.7517 0.6 0.7794 0.7823 0.7852 0.7704 0.7 0.7734 0.7764 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 0.9 0.8531 0.8554 0.8577 0.8599 0.8621 1.0 0.8790 1.1 0.8810 0.8830 0.8980 0.8997 0.9015 1.2 0.9177 0.9147 0.9162 1.3 0.9292 0.9306 0.9319 1.4 0.9686 0.9750 2.0 2.1 2.2 0.9861 0.9864 0.9772 0.9783 0.9778 0.9821 0.9826 0.9830 0.9868 2.3 0.1611 -0.9 0.9893 0,9896 2.4 0.9918 0.9920 2.5 0.9938 0.9940 0.9898 0.9922 0.1894 0.1867 -0.8 0.2148 -0.7 0.2451 -0.6 0.2776 -0.5 0.3121 0.3483 0.3859 0.4247 0.4641 -0.0 .09 -0.4 -0.3 -0.2 -0.1 2 ▲ B' \' C']' σ' 2.6 0.9957 0.9927 0.9929 0.9943 0.9945 0.9946 0.9959 0.9960 0.9931 0.9429 0.9418 0.9441 1.5 0.9525 0.9535 0.9545 1.6 0.9616 0.9625 0.9633 1.7 0.9699 0.9693 0.9706 1.8 1.9 0.9756 0.9761 0.9767 0.9788 2.0 0.9798 0.9803 0.9793 0.9817 0.9808 0.9812 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.1 0.9884 0.9887 0.9871 0.9875 0.9878 0.9881 0.9890 2.2 0.9913 0.9901 0.9904 0.9906 0.9909 0.9911 0.9925 0.9932 0.9934 0.9916 2.3 0.9936 2.4 ¡Ai --‹ ›0 = 0 2.7 2.8 2.9 3.4 2 .00 0.9941 0.9956 0.9953 0.9955 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9974 0.9976 0.9975 0.9977 0.9977 0.9979 0.9978 0.9981 0.9982 0.9982 0.9983 0.9984 0.9985 0.9986 2.9 0.9984 0.9985 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.0 3.1 0.9990 0.9993 0.9991 0.9991 0.9992 0.9992 0.9991 0.9993 3.1 0.9992 0.9992 3.2 0.9993 3.2 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9995 0.9995 3.3 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 .01 .02 .03 .04 0.9948 0.9949 0.9951 0.9952 2.5 0.9961 0.9962 0.9963 0.9964 2.6 0.9972 0.9973 0.9974 2.7 0.9979 0.9980 0.9981 2.8 0.9986 0.9997 3.3 3.4 .05 .06 .07 .08 .09
The distribution of heights of a certain breed of terrier has a mean of 71 centimeters and a standard deviation of 10 centimeters, whereas the distribution of heights of a certain breed of poodle has a mean of 28 centimeters with a standard deviation of 6 centimeters. Assuming that the sample means can be measured to any degree of accuracy, find the probability that the sample mean for a random sample of heights of 64 terriers exceeds the sample mean for a random sample of heights of 100 poodles by at most 44.2 centimeters. Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. The probability is ☐ (Round to four decimal places as needed.) Areas under the Normal Curve Area Areas under the Normal Curve .03 .04 -1.2 -1.1 0.3015 2 .00 .01 .02 -3.4 0.0003 0.0003 0.0003 0.0003 0.0003 -3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 -3.3 -3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 -3.2 0.0006 -3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 -3.1 0.0007 -3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 -3.0 -2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 -2.9 -2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0019 0.0021 -2.8 0.0020 0.0035 0.0033 0.0031 0.0030 0.0029 -2.7 0.0027 0.0034 0.0032 0.0028 0.0026 -2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 -2.6 -2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 -2.5 -2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 -2.4 -2.3 0.0107 0.0104 0.0099 0.0102 0.0091 0.0096 0.0094 0.0087 0.0089 0.0084 -2.3 -2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 -2.2 -2.1 0.0179 0.0166 0.0162 0.0158 0.0154 0.0150 0.0143 -2.1 0.0174 0.0170 0.0146 -2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 -2.0 -1.9 0.0287 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 0.0281 -1.9 0.0274 0.0359 -1.8 0.0344 0.0351 0.0336 0.0329 0.0307 0.0322 0.0301 0.0314 0.0294 -1.8 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 -1.7 0.0392 0.0384 0.0375 0.0367 -1.7 -1.6 0.0548 0.0516 0.0537 0.0465 0.0526 0.0455 -1.6 0.0505 0.0495 0.0485 0.0475 -1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 -1.5 0.0808 0.0793 0.0764 -1.4 0.0721 0.0708 0.0778 0.0681 0.0749 -1.4 0.0735 0.0694 -1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 -1.3 0.1131 0.1151 0.1112 0.1093 0.1056 0.1075 0.1038 0.1003 0.0985 -1.2 0.1020 0.1335 0.1314 0.1357 0.1251 0.1292 0.1271 0.1230 0.1210 0.1190 -1.1 0.1170 0.1539 0.1423 -1.0 0.1587 0.1562 0.1515 0.1492 0.1469 0.1446 0.1379 0.1401 -1.0 -0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 -0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.2389 -0.7 0.2420 0.2266 0.2358 0.2236 0.2327 0.2296 0.2206 0.2177 -0.6 0.2743 0.2709 0.2643 0.2578 0.2546 0.2514 0.2483 0.2676 0.2611 -0.5 0.3085 0.3050 0.2946 0.2912 0.2981 0.2810 0.2877 0.2843 -0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 -0.3 0.3783 0.3745 0.3707 0.3632 0.3821 0.3669 0.3594 0.3557 0.3520 -0.2 0.4207 0.4090 0.4168 0.4129 0.4052 0.4013 0.3974 0.3936 0.3897 0.4602 0.4522 0.4483 0.4443 -0.1 0.4364 0.4562 0.4325 0.4404 0.4286 0.4960 0.4801 -0.0 0.4721 0.5000 0.4920 0.4880 0.4840 0.4761 0.4681 .00 .01 .02 .03 .04 .05 .06 .07 .08 .05 .06 .07 .08 .09 Z .00 0.0003 0.0003 0.0003 0.0003 0.0002 -3.4 0.0 0.1 0.0004 0.0006 0.2 0.3 0.4 .01 .02 .03 .04 .05 .06 .07 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.0 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.1 0.6103 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6141 0.2 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6480 0.6406 0.6443 0.3 0.6517 0,6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.4 .08 .09 名 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 -2.7 0.7 0.7257 0.7580 0.8 0.7881 0.9 0.8159 1.0 0.8413 0.9726 0.7291 0.7324 0.7357 0.7611 0.7673 0.7642 0.7910 0.7939 0.7967 0.8186 0.8212 0.8238 0.8438 0.8461 0.8485 0.8508 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.9066 0.9099 1.3 0.9131 0.9032 0.9049 0.9082 0.9115 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 1.5 0.9345 0.9357 0.9370 0.9332 0.9382 0.9394 0.9406 0.9463 0.9505 1.6 0.9515 0.9452 0.9474 0.9484 0.9495 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 1.8 0.9656 0.9664 0.9641 0.9649 0.9671 0.9678 1.9 0.9713 0.9719 0.9732 0.9738 0.9744 0.5 0.7389 0.7422 0.7454 0.7486 0.7549 0.7517 0.6 0.7794 0.7823 0.7852 0.7704 0.7 0.7734 0.7764 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 0.9 0.8531 0.8554 0.8577 0.8599 0.8621 1.0 0.8790 1.1 0.8810 0.8830 0.8980 0.8997 0.9015 1.2 0.9177 0.9147 0.9162 1.3 0.9292 0.9306 0.9319 1.4 0.9686 0.9750 2.0 2.1 2.2 0.9861 0.9864 0.9772 0.9783 0.9778 0.9821 0.9826 0.9830 0.9868 2.3 0.1611 -0.9 0.9893 0,9896 2.4 0.9918 0.9920 2.5 0.9938 0.9940 0.9898 0.9922 0.1894 0.1867 -0.8 0.2148 -0.7 0.2451 -0.6 0.2776 -0.5 0.3121 0.3483 0.3859 0.4247 0.4641 -0.0 .09 -0.4 -0.3 -0.2 -0.1 2 ▲ B' \' C']' σ' 2.6 0.9957 0.9927 0.9929 0.9943 0.9945 0.9946 0.9959 0.9960 0.9931 0.9429 0.9418 0.9441 1.5 0.9525 0.9535 0.9545 1.6 0.9616 0.9625 0.9633 1.7 0.9699 0.9693 0.9706 1.8 1.9 0.9756 0.9761 0.9767 0.9788 2.0 0.9798 0.9803 0.9793 0.9817 0.9808 0.9812 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.1 0.9884 0.9887 0.9871 0.9875 0.9878 0.9881 0.9890 2.2 0.9913 0.9901 0.9904 0.9906 0.9909 0.9911 0.9925 0.9932 0.9934 0.9916 2.3 0.9936 2.4 ¡Ai --‹ ›0 = 0 2.7 2.8 2.9 3.4 2 .00 0.9941 0.9956 0.9953 0.9955 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9974 0.9976 0.9975 0.9977 0.9977 0.9979 0.9978 0.9981 0.9982 0.9982 0.9983 0.9984 0.9985 0.9986 2.9 0.9984 0.9985 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.0 3.1 0.9990 0.9993 0.9991 0.9991 0.9992 0.9992 0.9991 0.9993 3.1 0.9992 0.9992 3.2 0.9993 3.2 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9995 0.9995 3.3 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 .01 .02 .03 .04 0.9948 0.9949 0.9951 0.9952 2.5 0.9961 0.9962 0.9963 0.9964 2.6 0.9972 0.9973 0.9974 2.7 0.9979 0.9980 0.9981 2.8 0.9986 0.9997 3.3 3.4 .05 .06 .07 .08 .09
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
Solve the attached question please
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON