The differential equation d²y dx² y₁ = x² has x4 as a solution. Applying reduction order we set y2 ux 4. = Then (using the prime notation for the derivatives) y₂ = = dy 7x + 16y = 0 dx So, plugging y2 into the left side of the differential equation, and reducing, we get x²y₂ - 7xy₂ + 16y2 = The reduced form has a common factor of x5 which we can divide out of the equation so that we have xu" + u' = 0. Since this equation does not have any u terms in it we can make the substitution w = u' giving us the first order linear equation xw' + w = 0. This equation has integrating factor for x > 0. If we use a as the constant of integration, the solution to this equation is w = Integrating to get u, and using b as our second constant
The differential equation d²y dx² y₁ = x² has x4 as a solution. Applying reduction order we set y2 ux 4. = Then (using the prime notation for the derivatives) y₂ = = dy 7x + 16y = 0 dx So, plugging y2 into the left side of the differential equation, and reducing, we get x²y₂ - 7xy₂ + 16y2 = The reduced form has a common factor of x5 which we can divide out of the equation so that we have xu" + u' = 0. Since this equation does not have any u terms in it we can make the substitution w = u' giving us the first order linear equation xw' + w = 0. This equation has integrating factor for x > 0. If we use a as the constant of integration, the solution to this equation is w = Integrating to get u, and using b as our second constant
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,