The diagram below shows a rectangular loop moving to the right 6.0 cm every second. The loop has a length of 12 cm and a height of 8.0 cm. The loop enters a region with a uniform magnetic field of 0.50 Tesla pointing into the plane. The length of the field region is 24 cm. (a) Draw a neat graph of the flux through the loop as a function of time. Your time axis begins when the front end of the loop is about to enter the field region and the time axis ends when the back end of the loop has exited the field region. Your graph must be quantitative with the proper numerical values along each axis. (b) Indicate the position of the loop where the flux through the loop is a maximum and determine this maximum value. (c) Indicate the position of the loop where the absolute value of the rate of change of flux is a maximum and determine this maximum value. (d) Let the resistance of the loop in milli Ohms be equal to the perimeter of the loop in centimeters. Determine the magnitude and direction of the induced current in the loop for each segment in your graph in part (a). Please report on the current in milliAmperes. X loop moving to the right with speed v region with uniform B
Ampere Circuital Law
Ampere's Law states that "for any closed loop path, the sum of the length elements times the magnetic field in the direction of the length element is equal to the permeability times the electric current enclosed in the loop.”
Current Density
To design the electrical and electronic system, the current density is an important factor. The designer current level is the factor on which the circuit performance depends and with the help of the dimensions of the conducting current the current density is then determined. For instance, despite the lower current demanded by smaller devices as integrated circuits are reduced in size, there is a type of trend in achieving the higher device number in even smaller chip areas. The current density is increased in this region at higher frequencies because the conducting region in a wire becomes confined and this is known as the skin effect. The consequences increase as the current densities become higher.
Step by step
Solved in 4 steps with 3 images