The depth (in feet) of water at a dock changes with the rise and fall of tides. The depth is modeled by the function D(t) - π 5 sin -t + 6 7π 7T) + 6 +4 where t is the number of hours after midnight. Find the rate at which the depth is changing at 5 a.m. Round your answer to 4 decimal places. ft/hr

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
The depth (in feet) of water at a dock changes with the rise and fall of tides. The depth is modeled by the function

\[ D(t) = 5 \sin \left( \frac{\pi}{6} t + \frac{7\pi}{6} \right) + 4 \]

where \( t \) is the number of hours after midnight. Find the rate at which the depth is changing at 5 a.m. Round your answer to 4 decimal places.

\[ \boxed{\hspace{2cm}} \text{ ft/hr} \]
Transcribed Image Text:The depth (in feet) of water at a dock changes with the rise and fall of tides. The depth is modeled by the function \[ D(t) = 5 \sin \left( \frac{\pi}{6} t + \frac{7\pi}{6} \right) + 4 \] where \( t \) is the number of hours after midnight. Find the rate at which the depth is changing at 5 a.m. Round your answer to 4 decimal places. \[ \boxed{\hspace{2cm}} \text{ ft/hr} \]
## Problem Statement

Find the following using the table below.

### Table of Values

| \( x \) | 1 | 2 | 3 | 4 |
|---------|---|---|---|---|
| \( f(x) \) | 4 | 1 | 2 | 3 |
| \( f'(x) \) | 4 | 1 | 2 | 3 |
| \( g(x) \) | 4 | 1 | 3 | 2 |
| \( g'(x) \) | 4 | 1 | 2 | 3 |

### Questions

1. \( h'(3) \) if \( h(x) = f(x) \cdot g(x) \)  
   \[ \text{{Answer: }} \_\_\_\_\_\_\_ \]

2. \( h'(3) \) if \( h(x) = \frac{f(x)}{g(x)} \)  
   \[ \text{{Answer: }} \_\_\_\_\_\_\_ \]

3. \( h'(3) \) if \( h(x) = f(g(x)) \)  
   \[ \text{{Answer: }} \_\_\_\_\_\_\_ \]

### Explanation

For each case, use the appropriate rules of differentiation:

1. **Product Rule:** When \( h(x) = f(x) \cdot g(x) \), use \( h'(x) = f'(x)g(x) + f(x)g'(x) \).

2. **Quotient Rule:** When \( h(x) = \frac{f(x)}{g(x)} \), use \( h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \).

3. **Chain Rule:** When \( h(x) = f(g(x)) \), use \( h'(x) = f'(g(x)) \cdot g'(x) \).

Fill in the answers using the values from the table at \( x = 3 \).
Transcribed Image Text:## Problem Statement Find the following using the table below. ### Table of Values | \( x \) | 1 | 2 | 3 | 4 | |---------|---|---|---|---| | \( f(x) \) | 4 | 1 | 2 | 3 | | \( f'(x) \) | 4 | 1 | 2 | 3 | | \( g(x) \) | 4 | 1 | 3 | 2 | | \( g'(x) \) | 4 | 1 | 2 | 3 | ### Questions 1. \( h'(3) \) if \( h(x) = f(x) \cdot g(x) \) \[ \text{{Answer: }} \_\_\_\_\_\_\_ \] 2. \( h'(3) \) if \( h(x) = \frac{f(x)}{g(x)} \) \[ \text{{Answer: }} \_\_\_\_\_\_\_ \] 3. \( h'(3) \) if \( h(x) = f(g(x)) \) \[ \text{{Answer: }} \_\_\_\_\_\_\_ \] ### Explanation For each case, use the appropriate rules of differentiation: 1. **Product Rule:** When \( h(x) = f(x) \cdot g(x) \), use \( h'(x) = f'(x)g(x) + f(x)g'(x) \). 2. **Quotient Rule:** When \( h(x) = \frac{f(x)}{g(x)} \), use \( h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \). 3. **Chain Rule:** When \( h(x) = f(g(x)) \), use \( h'(x) = f'(g(x)) \cdot g'(x) \). Fill in the answers using the values from the table at \( x = 3 \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning