The data set AIRQ contains observations for 30 standard metropolitan statistical areas (SMSAS) in California for 1972 on the following variables. indicator of air quality (The lower the better) value added of companies (in 1000 US$) amount of rain (in inches) dummy variable, 1 for (SMSAS) at the coast, 0 for others population density (per square mile) average income per head (in US$) airq vala rain соas dens тedi reg airq vala rain coas dens medi df Number of obs 30 2.98 0.0313 0. 3829 0.2544 24.203 Source MS F( 5, Prob > F 24) = Model Residual 8723. 84625 14058.4538 5 1744.76925 24 585.768906 %3D R-squared Adj R-squared = Root MSE %3D Total 22782.3 29 785. 596552 %3D airq Coef. std. Err. t P>|t| [95% Conf. Interval] vala rain .0008834 .2506988 -33.3983 -.0010734 .0005545 111.9347 .0022562 .3435183 10.45752 .0016233 .0008503 15.33179 0. 39 0.73 -3.19 -0. 66 0. 699 0.473 0.004 0. 515 0. 521 0.000 -.0037731 -.458288 -54.98156 -.0044237 -.0012003 80. 29141 0055399 .9596857 -11. 81504 .0022769 .0023093 143. 5779 coas dens medi 0.65 7.30 _cons

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question
Explain how you can test the hypothesis that B2 related to average income per head is
0?
Transcribed Image Text:Explain how you can test the hypothesis that B2 related to average income per head is 0?
The data set AIRQ contains observations for 30 standard metropolitan statistical areas
(SMSAS) in California for 1972 on the following variables.
indicator of air quality (The lower the better)
value added of companies (in 1000 US$)
amount of rain (in inches)
dummy variable, 1 for (SMSAS) at the coast, 0 for others
population density (per square mile)
average income per head (in US$)
airq
vala
rain
сoas
dens
тedi
reg airq vala rain coas dens medi
df
Number of obs
30
2.98
Source
MS
F( 5,
Prob > F
24) =
Model
Residual
8723. 84625
14058.4538
1744.76925
0.0313
R-squared
Adj R-squared =
0. 3829
0.2544
24.203
24
585.768906
Total
22782.3
29
785. 596552
Root MSE
airq
Coef.
std. Err.
P>|t|
[95% Conf. Interval]
vala
rain
0. 699
.0008834
.2506988
-33. 3983
-.0010734
.0005545
0. 39
0.73
-3.19
-0. 66
0.65
.0055399
.9596857
-11. 81504
.0022562
-.0037731
-.458288
-54.98156
-.0044237
-.0012003
80. 29141
3435183
0.473
0. 004
0. 515
0. 521
сoas
10.45752
dens
medi
.0016233
.0022769
.0008503
.0023093
_cons
111.9347
15. 33179
7.30
0.000
143. 5779
Transcribed Image Text:The data set AIRQ contains observations for 30 standard metropolitan statistical areas (SMSAS) in California for 1972 on the following variables. indicator of air quality (The lower the better) value added of companies (in 1000 US$) amount of rain (in inches) dummy variable, 1 for (SMSAS) at the coast, 0 for others population density (per square mile) average income per head (in US$) airq vala rain сoas dens тedi reg airq vala rain coas dens medi df Number of obs 30 2.98 Source MS F( 5, Prob > F 24) = Model Residual 8723. 84625 14058.4538 1744.76925 0.0313 R-squared Adj R-squared = 0. 3829 0.2544 24.203 24 585.768906 Total 22782.3 29 785. 596552 Root MSE airq Coef. std. Err. P>|t| [95% Conf. Interval] vala rain 0. 699 .0008834 .2506988 -33. 3983 -.0010734 .0005545 0. 39 0.73 -3.19 -0. 66 0.65 .0055399 .9596857 -11. 81504 .0022562 -.0037731 -.458288 -54.98156 -.0044237 -.0012003 80. 29141 3435183 0.473 0. 004 0. 515 0. 521 сoas 10.45752 dens medi .0016233 .0022769 .0008503 .0023093 _cons 111.9347 15. 33179 7.30 0.000 143. 5779
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Correlation, Regression, and Association
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman