The D-string on a properly tuned guitar produces a tone with a fundamental frequency of 146.8Hz. The length of the oscillating portion of a D-string on a certain guitar is 0.616m. This same length of string is weighed and found have a mass of 1.72×10−3kg. Part (a) At what tension, in newtons, is the D-string properly tuned? Part (b) What is the wavelength, in meters, of the standing wave in the D-string when it is oscillating at its third harmonic, which is also called its second overtone? Part (c) Determine the frequency, in hertz, of the third harmonic of the tone produced by the properly tuned D-string.
Interference of sound
Seiche
A seiche is an oscillating standing wave in a body of water. The term seiche pronounced saysh) can be understood by the sloshing of water back and forth in a swimming pool. The same phenomenon happens on a much larger scale in vast bodies of water including bays and lakes. A seizure can happen in any enclosed or semi-enclosed body of water.
The D-string on a properly tuned guitar produces a tone with a fundamental frequency of 146.8Hz. The length of the oscillating portion of a D-string on a certain guitar is 0.616m. This same length of string is weighed and found have a mass of 1.72×10−3kg.
Part (a) At what tension, in newtons, is the D-string properly tuned?
Part (b) What is the wavelength, in meters, of the standing wave in the D-string when it is oscillating at its third harmonic, which is also called its second overtone?
Part (c) Determine the frequency, in hertz, of the third harmonic of the tone produced by the properly tuned D-string.
Part (d) The guitarist shortens the oscillating length of the properly tuned D-string by 0.138m by pressing on the string with a finger. What is the new fundamental frequency, in hertz, of the shortened string?

Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 5 images









