The Consumer Price Index for January 2023 is 300.536. Based on your linear regression model in Question 4, what is your prediction for the Personal Consumption Expenditure for January 2023? What is the 95% confidence interval? Please round your answers to the fourth decimal place. Prediction= 95% Confidence Interval
The Consumer Price Index for January 2023 is 300.536. Based on your linear regression model in Question 4, what is your prediction for the Personal Consumption Expenditure for January 2023? What is the 95% confidence interval? Please round your answers to the fourth decimal place. Prediction= 95% Confidence Interval
Chapter1: Making Economics Decisions
Section: Chapter Questions
Problem 1QTC
Related questions
Question
100%
The Economy 2020 to 2022.csv is given as follows: Please just solve for question 5,the solution to question 4 is also given as follows.
Year | Month | N_Week | PCEPI | CPIAUCSL | ICSA_Week1 | ICSA_Week2 | ICSA_Week3 | ICSA_Week4 | ICSA_Week5 |
2020 | 1 | 4 | 110.944 | 259.037 | 217000 | 203000 | 211000 | 200000 | |
2020 | 2 | 5 | 111.07 | 259.248 | 191000 | 186000 | 190000 | 196000 | 190000 |
2020 | 3 | 4 | 110.824 | 258.124 | 186000 | 221000 | 2914000 | 5946000 | |
2020 | 4 | 4 | 110.237 | 256.092 | 6137000 | 4869000 | 4201000 | 3446000 | |
2020 | 5 | 5 | 110.353 | 255.868 | 2796000 | 2335000 | 2176000 | 1921000 | 1639000 |
2020 | 6 | 4 | 110.746 | 256.986 | 1575000 | 1473000 | 1467000 | 1446000 | |
2020 | 7 | 4 | 111.072 | 258.278 | 1413000 | 1468000 | 1393000 | 1260000 | |
2020 | 8 | 5 | 111.411 | 259.411 | 1044000 | 884000 | 927000 | 876000 | 881000 |
2020 | 9 | 4 | 111.613 | 260.029 | 892000 | 861000 | 859000 | 795000 | |
2020 | 10 | 5 | 111.648 | 260.286 | 785000 | 839000 | 804000 | 776000 | 773000 |
2020 | 11 | 4 | 111.666 | 260.813 | 737000 | 738000 | 793000 | 737000 | |
2020 | 12 | 4 | 112.15 | 262.035 | 873000 | 886000 | 815000 | 773000 | |
2021 | 1 | 5 | 112.583 | 262.65 | 803000 | 890000 | 844000 | 799000 | 803000 |
2021 | 2 | 4 | 112.961 | 263.638 | 812000 | 802000 | 702000 | 704000 | |
2021 | 3 | 4 | 113.632 | 264.914 | 693000 | 699000 | 627000 | 658000 | |
2021 | 4 | 4 | 114.238 | 266.67 | 645000 | 571000 | 566000 | 574000 | |
2021 | 5 | 5 | 114.819 | 268.444 | 517000 | 494000 | 467000 | 441000 | 427000 |
2021 | 6 | 4 | 115.458 | 270.559 | 420000 | 429000 | 424000 | 405000 | |
2021 | 7 | 5 | 115.986 | 271.764 | 403000 | 391000 | 424000 | 411000 | 414000 |
2021 | 8 | 4 | 116.444 | 272.87 | 416000 | 405000 | 395000 | 381000 | |
2021 | 9 | 4 | 116.808 | 274.028 | 361000 | 363000 | 380000 | 376000 | |
2021 | 10 | 5 | 117.479 | 276.522 | 340000 | 317000 | 310000 | 294000 | 280000 |
2021 | 11 | 4 | 118.2 | 278.711 | 279000 | 265000 | 244000 | 240000 | |
2021 | 12 | 4 | 118.841 | 280.887 | 228000 | 228000 | 220000 | 211000 | |
2022 | 1 | 5 | 119.469 | 282.599 | 224000 | 238000 | 240000 | 222000 | 214000 |
2022 | 2 | 4 | 120.178 | 284.61 | 191000 | 209000 | 198000 | 182000 | |
2022 | 3 | 4 | 121.321 | 287.472 | 198000 | 177000 | 166000 | 171000 | |
2022 | 4 | 5 | 121.563 | 288.611 | 168000 | 186000 | 185000 | 181000 | 202000 |
2022 | 5 | 4 | 122.3 | 291.268 | 197000 | 218000 | 211000 | 202000 | |
2022 | 6 | 4 | 123.512 | 294.728 | 232000 | 231000 | 233000 | 231000 | |
2022 | 7 | 5 | 123.397 | 294.628 | 236000 | 244000 | 261000 | 237000 | 248000 |
2022 | 8 | 4 | 123.728 | 295.32 | 252000 | 245000 | 237000 | 228000 | |
2022 | 9 | 4 | 124.154 | 296.539 | 218000 | 208000 | 209000 | 190000 | |
2022 | 10 | 5 | 124.666 | 297.987 | 219000 | 226000 | 214000 | 218000 | 218000 |
2022 | 11 | 4 | 124.873 | 298.598 | 226000 | 223000 | 241000 | 226000 | |
2022 | 12 | 4 | 125.124 | 298.99 | 231000 | 212000 | 216000 | 225000 |

Transcribed Image Text:Question 5
The Consumer Price Index for January 2023 is 300.536. Based on your linear regression model in
Question 4, what is your prediction for the Personal Consumption Expenditure for January 2023?
What is the 95% confidence interval? Please round your answers to the fourth decimal place.
Prediction=
95% Confidence Interval= (
Question 4
Use the Economy 2020 to 2022.csv to train a linear regression model of Personal Consumption
Expenditure (the dependent variable) on Consumer Price Index (the independent variable). What is
the Intercept? What is the Slope? Please round your answers to the fourth decimal place.
Intercept =
Slope

Transcribed Image Text:Step 1: Data > Data Analysis > Regression analysis > OK
Step 2: Input values as given:
02
✓IX✓
fx PCE
9
10
11
13
14
13
16
31
32
33
35
36
37
38
4
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
ANOVA
Regression
Residual
Total
с
Intercept
CPI
D
PCE
Answer:
Regression Statistics
110.944
111.070 259.248
110.824 238.124
110237 256.092
110.353 255.868
110.746 256.986
111072
CPI
111.411 259.411
111.613
260.029
111.648
260.256
111.666 260.813
112.150
262.033
112.583
262.630
112.961 263.638
113.632 261.914
114.238 266.670
114.819 268.444
115.458 270.559
115.995 271.764
116.444 272.870
116.808 274.028
117.479 276.522
115.200 278.711
118.841 290.587
E
119.469 282.599
120.178
284.600
121.321 287.472
121.563 288.611
122.300
291 268
123.512
123.397
123.728
294.728
294.625
295.320
124.154 296.539
124.666
124.873 298.598
125.124
298.990
Sheet1 +
0.999365174
0.998730751
0.998693421
0.185936263
of
Intercept = 22.0882
Slope = 0.3445
36
F
1
34
35
Regression
Input
From the above steps, we derive the following table in Excel:
SUMMARY OUTPUT
Input Y Range:
Input X Range:
H
Labels
Confidence Level
Output options
O Output Range:
New Worksheet Ply
New Workbook
Residuals
Besiduals
Standardized Residuals
Normal Probability
Normal Probability Plots
SS
MS
F
924.9299102 924.9299102 26753.50129
1.175457993 0.034572294
926.1053682
Coefficients Standard Error
P-value
Stat
22.08820313 0.578293023 38.19552071 1.63817E-29
0.344535308 0.002106412 163.5649758 7.8264E-51
Interpretation
From the regression summary table above. we see that
Intercept = 22.08820313
CPI (Slope) = 0.344535308
95
J
$0$150537
SEST:$E$37
Constantis Zero
$G$2
K
Resigual Plots
Line Fit Plots
Significance F
7.8264E-51
L
M
N
?
OK
0
Cancel
Help
X
Lower 95% Upper 95%
Lower 95.0% Upper 95.0%
20.91297031 23.26343595 20.91297031 23.26343595
0.340254563 0.348816053 0.340254563 0.348816053
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, economics and related others by exploring similar questions and additional content below.Recommended textbooks for you


Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON

Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON


Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON

Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON

Principles of Economics (MindTap Course List)
Economics
ISBN:
9781305585126
Author:
N. Gregory Mankiw
Publisher:
Cengage Learning

Managerial Economics: A Problem Solving Approach
Economics
ISBN:
9781337106665
Author:
Luke M. Froeb, Brian T. McCann, Michael R. Ward, Mike Shor
Publisher:
Cengage Learning

Managerial Economics & Business Strategy (Mcgraw-…
Economics
ISBN:
9781259290619
Author:
Michael Baye, Jeff Prince
Publisher:
McGraw-Hill Education