The Consumer Price Index for January 2023 is 300.536. Based on your linear regression model in Question 4, what is your prediction for the Personal Consumption Expenditure for January 2023? What is the 95% confidence interval? Please round your answers to the fourth decimal place. Prediction= 95% Confidence Interval

ENGR.ECONOMIC ANALYSIS
14th Edition
ISBN:9780190931919
Author:NEWNAN
Publisher:NEWNAN
Chapter1: Making Economics Decisions
Section: Chapter Questions
Problem 1QTC
icon
Related questions
Question
100%

The Economy 2020 to 2022.csv is given as follows:  Please just solve for question 5,the solution to question 4 is also given as follows.

Year Month N_Week PCEPI CPIAUCSL ICSA_Week1 ICSA_Week2 ICSA_Week3 ICSA_Week4 ICSA_Week5
2020 1 4 110.944 259.037 217000 203000 211000 200000  
2020 2 5 111.07 259.248 191000 186000 190000 196000 190000
2020 3 4 110.824 258.124 186000 221000 2914000 5946000  
2020 4 4 110.237 256.092 6137000 4869000 4201000 3446000  
2020 5 5 110.353 255.868 2796000 2335000 2176000 1921000 1639000
2020 6 4 110.746 256.986 1575000 1473000 1467000 1446000  
2020 7 4 111.072 258.278 1413000 1468000 1393000 1260000  
2020 8 5 111.411 259.411 1044000 884000 927000 876000 881000
2020 9 4 111.613 260.029 892000 861000 859000 795000  
2020 10 5 111.648 260.286 785000 839000 804000 776000 773000
2020 11 4 111.666 260.813 737000 738000 793000 737000  
2020 12 4 112.15 262.035 873000 886000 815000 773000  
2021 1 5 112.583 262.65 803000 890000 844000 799000 803000
2021 2 4 112.961 263.638 812000 802000 702000 704000  
2021 3 4 113.632 264.914 693000 699000 627000 658000  
2021 4 4 114.238 266.67 645000 571000 566000 574000  
2021 5 5 114.819 268.444 517000 494000 467000 441000 427000
2021 6 4 115.458 270.559 420000 429000 424000 405000  
2021 7 5 115.986 271.764 403000 391000 424000 411000 414000
2021 8 4 116.444 272.87 416000 405000 395000 381000  
2021 9 4 116.808 274.028 361000 363000 380000 376000  
2021 10 5 117.479 276.522 340000 317000 310000 294000 280000
2021 11 4 118.2 278.711 279000 265000 244000 240000  
2021 12 4 118.841 280.887 228000 228000 220000 211000  
2022 1 5 119.469 282.599 224000 238000 240000 222000 214000
2022 2 4 120.178 284.61 191000 209000 198000 182000  
2022 3 4 121.321 287.472 198000 177000 166000 171000  
2022 4 5 121.563 288.611 168000 186000 185000 181000 202000
2022 5 4 122.3 291.268 197000 218000 211000 202000  
2022 6 4 123.512 294.728 232000 231000 233000 231000  
2022 7 5 123.397 294.628 236000 244000 261000 237000 248000
2022 8 4 123.728 295.32 252000 245000 237000 228000  
2022 9 4 124.154 296.539 218000 208000 209000 190000  
2022 10 5 124.666 297.987 219000 226000 214000 218000 218000
2022 11 4 124.873 298.598 226000 223000 241000 226000  
2022 12 4 125.124 298.99 231000 212000 216000 225000  
Question 5
The Consumer Price Index for January 2023 is 300.536. Based on your linear regression model in
Question 4, what is your prediction for the Personal Consumption Expenditure for January 2023?
What is the 95% confidence interval? Please round your answers to the fourth decimal place.
Prediction=
95% Confidence Interval= (
Question 4
Use the Economy 2020 to 2022.csv to train a linear regression model of Personal Consumption
Expenditure (the dependent variable) on Consumer Price Index (the independent variable). What is
the Intercept? What is the Slope? Please round your answers to the fourth decimal place.
Intercept =
Slope
Transcribed Image Text:Question 5 The Consumer Price Index for January 2023 is 300.536. Based on your linear regression model in Question 4, what is your prediction for the Personal Consumption Expenditure for January 2023? What is the 95% confidence interval? Please round your answers to the fourth decimal place. Prediction= 95% Confidence Interval= ( Question 4 Use the Economy 2020 to 2022.csv to train a linear regression model of Personal Consumption Expenditure (the dependent variable) on Consumer Price Index (the independent variable). What is the Intercept? What is the Slope? Please round your answers to the fourth decimal place. Intercept = Slope
Step 1: Data > Data Analysis > Regression analysis > OK
Step 2: Input values as given:
02
✓IX✓
fx PCE
9
10
11
13
14
13
16
31
32
33
35
36
37
38
4
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
ANOVA
Regression
Residual
Total
с
Intercept
CPI
D
PCE
Answer:
Regression Statistics
110.944
111.070 259.248
110.824 238.124
110237 256.092
110.353 255.868
110.746 256.986
111072
CPI
111.411 259.411
111.613
260.029
111.648
260.256
111.666 260.813
112.150
262.033
112.583
262.630
112.961 263.638
113.632 261.914
114.238 266.670
114.819 268.444
115.458 270.559
115.995 271.764
116.444 272.870
116.808 274.028
117.479 276.522
115.200 278.711
118.841 290.587
E
119.469 282.599
120.178
284.600
121.321 287.472
121.563 288.611
122.300
291 268
123.512
123.397
123.728
294.728
294.625
295.320
124.154 296.539
124.666
124.873 298.598
125.124
298.990
Sheet1 +
0.999365174
0.998730751
0.998693421
0.185936263
of
Intercept = 22.0882
Slope = 0.3445
36
F
1
34
35
Regression
Input
From the above steps, we derive the following table in Excel:
SUMMARY OUTPUT
Input Y Range:
Input X Range:
H
Labels
Confidence Level
Output options
O Output Range:
New Worksheet Ply
New Workbook
Residuals
Besiduals
Standardized Residuals
Normal Probability
Normal Probability Plots
SS
MS
F
924.9299102 924.9299102 26753.50129
1.175457993 0.034572294
926.1053682
Coefficients Standard Error
P-value
Stat
22.08820313 0.578293023 38.19552071 1.63817E-29
0.344535308 0.002106412 163.5649758 7.8264E-51
Interpretation
From the regression summary table above. we see that
Intercept = 22.08820313
CPI (Slope) = 0.344535308
95
J
$0$150537
SEST:$E$37
Constantis Zero
$G$2
K
Resigual Plots
Line Fit Plots
Significance F
7.8264E-51
L
M
N
?
OK
0
Cancel
Help
X
Lower 95% Upper 95%
Lower 95.0% Upper 95.0%
20.91297031 23.26343595 20.91297031 23.26343595
0.340254563 0.348816053 0.340254563 0.348816053
Transcribed Image Text:Step 1: Data > Data Analysis > Regression analysis > OK Step 2: Input values as given: 02 ✓IX✓ fx PCE 9 10 11 13 14 13 16 31 32 33 35 36 37 38 4 Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total с Intercept CPI D PCE Answer: Regression Statistics 110.944 111.070 259.248 110.824 238.124 110237 256.092 110.353 255.868 110.746 256.986 111072 CPI 111.411 259.411 111.613 260.029 111.648 260.256 111.666 260.813 112.150 262.033 112.583 262.630 112.961 263.638 113.632 261.914 114.238 266.670 114.819 268.444 115.458 270.559 115.995 271.764 116.444 272.870 116.808 274.028 117.479 276.522 115.200 278.711 118.841 290.587 E 119.469 282.599 120.178 284.600 121.321 287.472 121.563 288.611 122.300 291 268 123.512 123.397 123.728 294.728 294.625 295.320 124.154 296.539 124.666 124.873 298.598 125.124 298.990 Sheet1 + 0.999365174 0.998730751 0.998693421 0.185936263 of Intercept = 22.0882 Slope = 0.3445 36 F 1 34 35 Regression Input From the above steps, we derive the following table in Excel: SUMMARY OUTPUT Input Y Range: Input X Range: H Labels Confidence Level Output options O Output Range: New Worksheet Ply New Workbook Residuals Besiduals Standardized Residuals Normal Probability Normal Probability Plots SS MS F 924.9299102 924.9299102 26753.50129 1.175457993 0.034572294 926.1053682 Coefficients Standard Error P-value Stat 22.08820313 0.578293023 38.19552071 1.63817E-29 0.344535308 0.002106412 163.5649758 7.8264E-51 Interpretation From the regression summary table above. we see that Intercept = 22.08820313 CPI (Slope) = 0.344535308 95 J $0$150537 SEST:$E$37 Constantis Zero $G$2 K Resigual Plots Line Fit Plots Significance F 7.8264E-51 L M N ? OK 0 Cancel Help X Lower 95% Upper 95% Lower 95.0% Upper 95.0% 20.91297031 23.26343595 20.91297031 23.26343595 0.340254563 0.348816053 0.340254563 0.348816053
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Knowledge Booster
Autocorrelation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, economics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
ENGR.ECONOMIC ANALYSIS
ENGR.ECONOMIC ANALYSIS
Economics
ISBN:
9780190931919
Author:
NEWNAN
Publisher:
Oxford University Press
Principles of Economics (12th Edition)
Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON
Engineering Economy (17th Edition)
Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON
Principles of Economics (MindTap Course List)
Principles of Economics (MindTap Course List)
Economics
ISBN:
9781305585126
Author:
N. Gregory Mankiw
Publisher:
Cengage Learning
Managerial Economics: A Problem Solving Approach
Managerial Economics: A Problem Solving Approach
Economics
ISBN:
9781337106665
Author:
Luke M. Froeb, Brian T. McCann, Michael R. Ward, Mike Shor
Publisher:
Cengage Learning
Managerial Economics & Business Strategy (Mcgraw-…
Managerial Economics & Business Strategy (Mcgraw-…
Economics
ISBN:
9781259290619
Author:
Michael Baye, Jeff Prince
Publisher:
McGraw-Hill Education