The complex cube roots of 63 +6 i.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

Find all the complex roots. Leave your answer in polar form with the argument in degrees.

The complex cube roots of \( 6\sqrt{3} + 6i \).

**Solution:**

To find the complex cube roots of the given complex number, follow these steps:

1. **Convert to Polar Form:**

   - Calculate the magnitude \( r \) of the complex number: 

     \[
     r = \sqrt{(6\sqrt{3})^2 + (6)^2} = \sqrt{108 + 36} = \sqrt{144} = 12
     \]

   - Calculate the argument \( \theta \): 

     \[
     \theta = \tan^{-1}\left(\frac{6}{6\sqrt{3}}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = 30^\circ
     \]

   The polar form is \( 12 \text{cis} 30^\circ \), where "cis" is shorthand for \( \cos \theta + i \sin \theta \).

2. **Find the Cube Roots:**

   The formula for finding the \( n \)-th roots of a complex number in polar form is given by:

   \[
   z_k = r^{1/n} \text{cis} \left(\frac{\theta + 360^\circ k}{n}\right)
   \]

   - For cube roots (\( n = 3 \)), compute:

     \[
     r^{1/3} = 12^{1/3} = 2\sqrt{3}
     \]

   - Calculate each root:

     \[
     z_0 = 2\sqrt{3} \text{cis} \left(\frac{30^\circ}{3}\right) = 2\sqrt{3} \text{cis} 10^\circ
     \]

     \[
     z_1 = 2\sqrt{3} \text{cis} \left(\frac{30^\circ + 360^\circ}{3}\right) = 2\sqrt{3} \text{cis} 130^\circ
     \]

     \[
     z_2 = 2\sqrt{3} \text{cis} \left(\frac{30^\circ + 720^\
Transcribed Image Text:**Problem Statement:** Find all the complex roots. Leave your answer in polar form with the argument in degrees. The complex cube roots of \( 6\sqrt{3} + 6i \). **Solution:** To find the complex cube roots of the given complex number, follow these steps: 1. **Convert to Polar Form:** - Calculate the magnitude \( r \) of the complex number: \[ r = \sqrt{(6\sqrt{3})^2 + (6)^2} = \sqrt{108 + 36} = \sqrt{144} = 12 \] - Calculate the argument \( \theta \): \[ \theta = \tan^{-1}\left(\frac{6}{6\sqrt{3}}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = 30^\circ \] The polar form is \( 12 \text{cis} 30^\circ \), where "cis" is shorthand for \( \cos \theta + i \sin \theta \). 2. **Find the Cube Roots:** The formula for finding the \( n \)-th roots of a complex number in polar form is given by: \[ z_k = r^{1/n} \text{cis} \left(\frac{\theta + 360^\circ k}{n}\right) \] - For cube roots (\( n = 3 \)), compute: \[ r^{1/3} = 12^{1/3} = 2\sqrt{3} \] - Calculate each root: \[ z_0 = 2\sqrt{3} \text{cis} \left(\frac{30^\circ}{3}\right) = 2\sqrt{3} \text{cis} 10^\circ \] \[ z_1 = 2\sqrt{3} \text{cis} \left(\frac{30^\circ + 360^\circ}{3}\right) = 2\sqrt{3} \text{cis} 130^\circ \] \[ z_2 = 2\sqrt{3} \text{cis} \left(\frac{30^\circ + 720^\
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Roots
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,