The company wishes to maximise contribution. Set out the objective function and the constraints. Determine the optimum production of each product over the final quarter using the graphical approach to linear programming and calculate the optimum net profit for the final quarter of 2004. Calculate the shadow price of STX2 and explain how Jane may use it.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Emily Wye is currently working on the production schedules for next month. Her firm manufactures two types of ceramic grids:

Type A

£

Type B

£

Selling price

60

70

Material X1 (at £2 per kg)

3

6

Material X2 (at £5 per kg)

10

10

Direct labour (grade 1)

12

9

Direct labour (grade 2)

10

15

Variable overhead

5

7

Notes:

  1. Labour rates and maximum labour hours available in the next month are:

Grade

Hourly rate

Max. monthly hours

1

£6

640

2

£5

Unlimited

  1. Both products involve machine work, type A requiring 1 hour and B half an hour. The machine is available for 400 hours per month.

  2. Next month the company will have available 900 kg of X1. The firm can buy as much X2 as it wishes.

  3. Fixed overheads in the coming month will amount to £1950.

    1. The company wishes to maximise contribution. Set out the objective func- tion and the constraints.

    2. Determine the optimum output of each product next month using the graph- ical approach to linear programming. Calculate the optimum profit for the month.

    3. Calculate the amount of spare capacity available next month.

    4. Discuss three limitations of linear programming.

Jane Lane is the management accountant of a small manufacturing company. Jane normally gets involved in the production scheduling of the firm. She is currently working on this for the last three months of 2004, making use of her management accounting and linear programming skills.

The company manufactures components for rock climbing, including two types of ice axe, the X1 and the X2. During the last quarter of 2004, each X1 will have a selling price of £67 and each X2 a selling price of £78.

The cost of each axe is made up as follows:

X1 (£)

X2 (£)

Materials: STX2 at £12 per metre

15

18

Labour: at £4.50 per hour

9

18

Variable overhead: at £5 per mc/hr

10

15

In addition, monthly fixed manufacturing overheads are budgeted to be £2000 per month and fixed non-manufacturing overheads are budgeted to be £5000 for the three- month period.

The company will have the following resources available to it for the last quarter of the year: 800 metres of STX2, 2000 hours of labour and 1800 machine hours. The firm wishes to supply its retailers with no less than 150 of each type of axe during the final quarter.

  1. The company wishes to maximise contribution. Set out the objective function and the constraints.

  2. Determine the optimum production of each product over the final quarter using the graphical approach to linear programming and calculate the optimum net profit for the final quarter of 2004.

  3. Calculate the shadow price of STX2 and explain how Jane may use it.

Expert Solution
steps

Step by step

Solved in 4 steps with 15 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,