The Colussus is a ferris wheel at 6 Flags amusement park with a 50.4 m diameter. It rotates at 1.5 rpm. For the following, assume the rider has a mass m = 65 kg, and that the rider sits forward with feet up so the only part of the seat that exerts a force on the rider is the horizontal seat bottom. As usual, a free body diagram is a great place to start. Find the normal force exerted by a seat on a person riding the Colossus at the highest point in the ride. Hint: the speed of the rider can be computed from the circumference of their circular path and the time it takes to make one full revolution. Find the normal force exerted by a seat on a person riding the Colossus at the lowest point in the ride.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
The Colussus is a ferris wheel at 6 Flags amusement park with a 50.4 m diameter. It rotates
at 1.5 rpm. For the following, assume the rider has a mass m = 65 kg, and that the rider sits
forward with feet up so the only part of the seat that exerts a force on the rider is the horizontal
seat bottom. As usual, a free body diagram is a great place to start.
Find the normal force exerted by a seat on a person riding the Colossus at the highest
point in the ride. Hint: the speed of the rider can be computed from the circumference
of their circular path and the time it takes to make one full revolution.
Find the normal force exerted by a seat on a person riding the Colossus at the lowest
point in the ride.
Transcribed Image Text:The Colussus is a ferris wheel at 6 Flags amusement park with a 50.4 m diameter. It rotates at 1.5 rpm. For the following, assume the rider has a mass m = 65 kg, and that the rider sits forward with feet up so the only part of the seat that exerts a force on the rider is the horizontal seat bottom. As usual, a free body diagram is a great place to start. Find the normal force exerted by a seat on a person riding the Colossus at the highest point in the ride. Hint: the speed of the rider can be computed from the circumference of their circular path and the time it takes to make one full revolution. Find the normal force exerted by a seat on a person riding the Colossus at the lowest point in the ride.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Centripetal force
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON