The circuit shown in Figure DP 3-11 is designed to help orange growers protect their crops against frost by sounding an alarm when the temperature falls below freezing. It contains a thermistor that has a resistance Ro=620 N at the temperature To=20°C=293 °K and ß=3330 °K. (See problem DP 3-9.) The alarm will sound when the voltage at the – input of the comparator is less than the voltage at the + input. Using voltage division twice, we see that the alarm sounds whenever R4 R2 RT + R2 R3 +R4 Determine values of R2, R3, and R4 that cause the alarm to sound when T = 50 °C 12 V 12 V [K Thermistor RT R3 Buzzer

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
The circuit shown in Figure DP 3-11 is designed to
help orange growers protect their crops against frost by sounding
an alarm when the temperature falls below freezing. It contains a
thermistor that has a resistance Ro=620 N at the temperature
To=20 °C=293 °K and ß= 3330 °K. (See problem DP 3-9.)
The alarm will sound when the voltage at the - input of
the comparator is less than the voltage at the + input. Using
voltage division twice, we see that the alarm sounds whenever
R2
R4
RT + R2
R3 +R4
Determine values of R2, R3, and R4 that cause the alarm to
sound when T = 50 °C
12 V
12 V
Thermistor
RT
R3
Buzzer
Comparator
RA
R2
Figure DP 3-11
Hi
Transcribed Image Text:The circuit shown in Figure DP 3-11 is designed to help orange growers protect their crops against frost by sounding an alarm when the temperature falls below freezing. It contains a thermistor that has a resistance Ro=620 N at the temperature To=20 °C=293 °K and ß= 3330 °K. (See problem DP 3-9.) The alarm will sound when the voltage at the - input of the comparator is less than the voltage at the + input. Using voltage division twice, we see that the alarm sounds whenever R2 R4 RT + R2 R3 +R4 Determine values of R2, R3, and R4 that cause the alarm to sound when T = 50 °C 12 V 12 V Thermistor RT R3 Buzzer Comparator RA R2 Figure DP 3-11 Hi
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Current division Method
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,