The belt in Fig. P1.52 moves at a steady velocity V and skims the top of a tank of oil of viscosity u, as shown. Assuming a linear velocity profile in the oil, develop a simple formula for the required belt-drive power P as a function of (h, L, V, b, µ). What belt-drive power P, in watts, is required if the belt moves at 2.5 m/s over SAE 30W oil at 20°C, with L = 2 m, b = 60 cm, and h = 3 cm? %3D
The belt in Fig. P1.52 moves at a steady velocity V and skims the top of a tank of oil of viscosity u, as shown. Assuming a linear velocity profile in the oil, develop a simple formula for the required belt-drive power P as a function of (h, L, V, b, µ). What belt-drive power P, in watts, is required if the belt moves at 2.5 m/s over SAE 30W oil at 20°C, with L = 2 m, b = 60 cm, and h = 3 cm? %3D
The belt in Fig. P1.52 moves at a steady velocity V and skims the top of a tank of oil of viscosity u, as shown. Assuming a linear velocity profile in the oil, develop a simple formula for the required belt-drive power P as a function of (h, L, V, b, µ). What belt-drive power P, in watts, is required if the belt moves at 2.5 m/s over SAE 30W oil at 20°C, with L = 2 m, b = 60 cm, and h = 3 cm? %3D