The Bay of Fundy, Nova Scotia, has the highest tides in the world. Assume in midocean and at the mouth of the bay the Moon’s gravity gradient and the Earth’s rotation make the water surface oscillate with an amplitude of a few centimeters and a period of 12 h 24 min. At the head of the bay, the amplitude is several meters. Assume the bay has a length of 210 km and a uniform depth of 36.1 m. The speed of long-wavelength water waves is given by υ = √gd, where d is the water’s depth. Argue for or against the propositionthat the tide is magnified by standing-wave resonance.
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
The Bay of Fundy, Nova Scotia, has the highest tides in the world. Assume in midocean and at the mouth of the bay the Moon’s gravity gradient and the Earth’s rotation make the water surface oscillate with an amplitude of a few centimeters and a period of 12 h 24 min. At the head of the bay, the amplitude is several meters. Assume the bay has a length of 210 km and a uniform depth of 36.1 m. The speed of long-wavelength water waves is given by υ = √gd, where d is the water’s depth. Argue for or against the proposition
that the tide is magnified by standing-wave resonance.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 4 images