The ball launcher in a pinball machine has a spring that has a force constant of 1.23 N/cm. The surface on which the ball moves is in- clined 15.6◦ with respect to the horizontal. If the spring is initially compressed 3.58 cm, find the launching speed of a 0.19 kg ball when the plunger is released. The acceleration due to gravity is 9.8 m/s2 . Friction and the mass of the plunger are negligible.
The ball launcher in a pinball machine has a spring that has a force constant of 1.23 N/cm. The surface on which the ball moves is in- clined 15.6◦ with respect to the horizontal. If the spring is initially compressed 3.58 cm, find the launching speed of a 0.19 kg ball when the plunger is released. The acceleration due to gravity is 9.8 m/s2 . Friction and the mass of the plunger are negligible.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
The ball launcher in a pinball machine has a spring that has a force constant of 1.23 N/cm. The surface on which the ball moves is in- clined 15.6◦ with respect to the horizontal.
If the spring is initially compressed 3.58 cm, find the launching speed of a 0.19 kg ball when the plunger is released. The acceleration due to gravity is 9.8 m/s2 . Friction and the mass of the plunger are negligible.

Transcribed Image Text:### Transcription for Educational Context
#### Description of System and Diagram
The diagram illustrates a setup for analyzing the motion of an object on an inclined plane with a spring mechanism.
1. **Setup Overview**:
- The system consists of a hand holding a spring-loaded launcher on a 15.6° inclined plane.
- The launcher is used to propel a spherical object (indicated in dark gray) along the incline.
2. **Detailed Components**:
- **Spring**:
- The spring constant is provided as \(1.23 \, \text{N/cm}\).
- Initially, the spring is compressed by \(3.58 \, \text{cm}\).
- **Projectile Motion**:
- The object starts from rest, indicated by \(v_0 = 0\).
- Upon release, the object moves up the incline with velocity \(v\).
3. **Inclined Plane**:
- The plane is at an angle of \(15.6°\) relative to the horizontal, demonstrating the effect of gravitational and frictional forces on the motion.
#### Interpretation
This setup is typically used in physics to study concepts such as:
- Kinetic and potential energy conversion.
- Hooke's Law related to spring force and spring constant.
- Motion on an inclined plane including components of gravitational force along the incline.
Understanding these principles is crucial for analyzing projectile motion and energy transformation in systems.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON