THE ASSOCIATED LEGENDRE FUNCTIONS: m dm P" (x) = (1 – x²) dxm P(x) Example: Make the change of variable x= cos 8 in Sing do Si79 To find:

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Explain this proof in very boring details please

THE ASSOCIATED LEGENDRE FUNCTIONS:
dm
P.(x)
m
P™ (x) = (1 – x²).
dxm
Example:
Make the change of variable x= cos 8 in
m
To find:
Si79
(1 – x²) y" – 2xy' +
m2
- 1) –
y = 0
with
m² s1?
1- x2
Somtion:-
dz
cos8 >
sind
00
dy
dy
dy
(- sin@)
%3D
dy
- sing
dy
oy sin'g + cos'8 = 1 → sin'9 = Vx²
%3D
brom (2) into c1):
dy
do
dy
%3D
|
- VT-x²
%3D
doc
dy
%3D
%3D
de de
d'y
dx
= - - z'
d'y
Transcribed Image Text:THE ASSOCIATED LEGENDRE FUNCTIONS: dm P.(x) m P™ (x) = (1 – x²). dxm Example: Make the change of variable x= cos 8 in m To find: Si79 (1 – x²) y" – 2xy' + m2 - 1) – y = 0 with m² s1? 1- x2 Somtion:- dz cos8 > sind 00 dy dy dy (- sin@) %3D dy - sing dy oy sin'g + cos'8 = 1 → sin'9 = Vx² %3D brom (2) into c1): dy do dy %3D | - VT-x² %3D doc dy %3D %3D de de d'y dx = - - z' d'y
dy
%D
xp
OP
For a given eguation ;-
(Sin 8 dy
]y= 0
Sinig
Sind dg
we get :
(Sin8
d, ]y= o
cos 8 d)+[ eceai) -
Sin'g
Sin e
cos 8 dy +[ec&+1) -
Sin g do
Sin? g
From (3) and (5)
into (6)
d'y
dy
dy
+ [ ecepi) - ]y = 0
Jy =0
|
d'y
dy
dy
ece t)-
y] = 0
%3D
(1- x²)
dy
dy
- 2 x
+ [ ec& +1) - Jy=0
dx?
Transcribed Image Text:dy %D xp OP For a given eguation ;- (Sin 8 dy ]y= 0 Sinig Sind dg we get : (Sin8 d, ]y= o cos 8 d)+[ eceai) - Sin'g Sin e cos 8 dy +[ec&+1) - Sin g do Sin? g From (3) and (5) into (6) d'y dy dy + [ ecepi) - ]y = 0 Jy =0 | d'y dy dy ece t)- y] = 0 %3D (1- x²) dy dy - 2 x + [ ec& +1) - Jy=0 dx?
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,