The amount of vegetation eaten in a day by a grazing animal is a function of the amount V of food available (measured as biomass in units such as pounds per acre). This relationship is called the functional response. If there is little vegetation available, the daily intake vill be small, since the animal will have difficulty finding and eating the food. As the food biomass incre ases, so does the daily intake. Clearly, though, there is a limit to the amount the animal will eat, regardless of the amount of food available. This maximum amount eaten is the satiation level. In addition to the kangaroos, the major grazing mammals of Australia include merino sheep and rabbits. For sheep the functional response is $ 2.8 - 2.0e 0.0r, and for rabbits it is H- 0.2 - 0.2e 0.00 Here S and H are the daily intake (measured in pounds), and Vis the vegetation biomass (measured in pounds per acre). (a) Find the satiation level for sheep and that for rabbits. (Round your answers to three decimal places.) sheep Ib Ib rabbits (b) One concern in the management of rangelands is whether the various species of grazing animals are forced to compete for food. It is thought that competition will not be a problem if the vegetation biomass level provides at least 85% of the satiation level for each species. What biomass level quarantees that competition between sheep and rabbits will not be a problem? (Round your answer to tvo decimal places.) Ib/acre Need Help? Read
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
Given relations are
where and are daily intake of sheep and rabbits respectively measured in pound and is the vegetation biomass measured in pound per acre.
To find station level for sheep and rabbit.
To find station level for sheep, let us differentiate w.r.t . It results
Clearly as and as , . Therefore, satiation level for the sheep will go for and in that case . So, satiation level for the sheep is 2.8 lb.
Similarly, for the rabbits, differentiating w.r.t , it results
Clearly as and as , . Therefore, satiation level for the rabbit will go for and in that case . So, satiation level for the sheep is 0.2 lb.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps