The acid dissociation K, of benzoic acid (C6H5CO,H) is 6.3 × 10 –³. Calculate the pH of a 1.5 × 10¯°M aqueous solution of benzoic acid. Round your answer to 2 decimal places.
Ionic Equilibrium
Chemical equilibrium and ionic equilibrium are two major concepts in chemistry. Ionic equilibrium deals with the equilibrium involved in an ionization process while chemical equilibrium deals with the equilibrium during a chemical change. Ionic equilibrium is established between the ions and unionized species in a system. Understanding the concept of ionic equilibrium is very important to answer the questions related to certain chemical reactions in chemistry.
Arrhenius Acid
Arrhenius acid act as a good electrolyte as it dissociates to its respective ions in the aqueous solutions. Keeping it similar to the general acid properties, Arrhenius acid also neutralizes bases and turns litmus paper into red.
Bronsted Lowry Base In Inorganic Chemistry
Bronsted-Lowry base in inorganic chemistry is any chemical substance that can accept a proton from the other chemical substance it is reacting with.
![### Calculating the pH of a Benzoic Acid Solution
**Problem Statement:**
The acid dissociation constant, \( K_a \), of benzoic acid \( \left( C_6H_5CO_2H \right) \) is \( 6.3 \times 10^{-5} \).
Calculate the pH of a \( 1.5 \times 10^{-3} \, M \) aqueous solution of benzoic acid. Round your answer to 2 decimal places.
---
**Instructions:**
1. **Equation for \( K_a \):**
\[
K_a = \frac{[H^+][A^-]}{[HA]}
\]
where \( [H^+] \) is the concentration of hydrogen ions, \( [A^-] \) is the concentration of the conjugate base, and \( [HA] \) is the concentration of the acid.
2. **Initial concentration:**
- The initial concentration of benzoic acid, \( [C_6H_5CO_2H] \), is \( 1.5 \times 10^{-3} \, M \).
3. **Assumption and approximation:**
- Assume that the concentration of \( H^+ \) is equal to that of \( A^- \) due to the dissociation.
- Let \( x \) represent the concentration of \( H^+ \).
4. **Simplified expression:**
\[
K_a \approx \frac{[H^+]^2}{[HA - x]} \approx \frac{x^2}{[HA]}
\]
5. **Substituting known values:**
\[
6.3 \times 10^{-5} = \frac{x^2}{1.5 \times 10^{-3} - x}
\]
Assuming \( x \) is much smaller than \( 1.5 \times 10^{-3} \), simplify:
\[
6.3 \times 10^{-5} \approx \frac{x^2}{1.5 \times 10^{-3}}
\]
6. **Solving for \( x \) or \( [H^+] \):**
\[
x^2 = 6.3 \times 10^{-5} \times 1](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Feadc81de-613f-46f4-aced-a703abfea63b%2Fda01b38a-7acf-4dd7-a5cb-96d3a50345c7%2F1qxsn3.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)