The 2.00-kg slender rod shown is hanging in a vertical position and is pin-supported at point A. The slender rod is initially at rest until a 1.000-kg block C, strikes it at its end at point B. The block slides on a frictionless surface with a velocity of 3.50 m/s to the right. After the impact, it slides with a velocity of 1.250 m/s to the right, and the bar rotates with an angular velocity, w'. 3.5 m/s B 1.5 m Answer the following questions given the picture. Please show clear solutions, I want to learn how to solve the problem. 1a. Which of the following gives the correct kinematic relationship relating the final velocity of the center of the rod, v'G, and its angular velocity, w'? A) 1.333 w B) 0.667 w' C) 1.500 w D) 0.75 w' 1b. Which of the following gives the closest value of the magnitude of the horizontal impulse at the support at point A? A) 1.125 N-s B) 1.350 N-s C) 0.1180 N-s D) 2.25 N-s

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Topic Video
Question
The 2.00-kg slender rod shown is hanging in a vertical
position and is pin-supported at point A. The slender rod is
initially at rest until a 1.000-kg block C, strikes it at its end
at point B.
The block slides on a frictionless surface with a velocity of
3.50 m/s to the right. After the impact, it slides with a
velocity of 1.250 m/s to the right, and the bar rotates with
an angular velocity, w'.
3.5 m/s
с
B
1.5 m
Answer the following questions given the picture. Please show clear
solutions, I want to learn how to solve the problem.
1a. Which of the following gives the correct kinematic relationship
relating the final velocity of the center of the rod, v'G, and its angular
velocity, w'?
A) 1.333 w'
B) 0.667 w'
C) 1.500 w'
D) 0.75 w'
1b. Which of the following gives the closest value of the magnitude of
the horizontal impulse at the support at point A?
A) 1.125 N-s
B) 1.350 N-s
C) 0.1180 N-s
D) 2.25 N-s
Transcribed Image Text:The 2.00-kg slender rod shown is hanging in a vertical position and is pin-supported at point A. The slender rod is initially at rest until a 1.000-kg block C, strikes it at its end at point B. The block slides on a frictionless surface with a velocity of 3.50 m/s to the right. After the impact, it slides with a velocity of 1.250 m/s to the right, and the bar rotates with an angular velocity, w'. 3.5 m/s с B 1.5 m Answer the following questions given the picture. Please show clear solutions, I want to learn how to solve the problem. 1a. Which of the following gives the correct kinematic relationship relating the final velocity of the center of the rod, v'G, and its angular velocity, w'? A) 1.333 w' B) 0.667 w' C) 1.500 w' D) 0.75 w' 1b. Which of the following gives the closest value of the magnitude of the horizontal impulse at the support at point A? A) 1.125 N-s B) 1.350 N-s C) 0.1180 N-s D) 2.25 N-s
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Fluid Statics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY