The 100 kg sphere A is released from rest at an angle of a from the vertical, and hits the 10 kg block B (initially at rest), causing block B to have an initial velocity of 5 m/s as it enters the circular ramp (radius = 5 m) and stop temporarily at a final height h. The coefficient of restitution between sphere A and the block B is 0.6. Assume all surfaces are frictionless. Also assume direct impact between A and B. B

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
100%

The 100 kg sphere A is released from rest at an angle of α from the vertical, and hits the 10 kg block B (initially at rest), causing block B to have an initial velocity of 5 m/s as it enters the circular ramp (radius = 5 m) and stop temporarily at a final height h. The coefficient of restitution between sphere A and the block B is 0.6. Assume all surfaces are frictionless. Also assume direct impact between A and B.

Which of the following best approximates the value of height h

0.255m

0.510 m

5.00 m

1.274 m

The 100 kg sphere A is released from rest at an angle of a from the vertical, and hits the 10 kg block B (initially at rest), causing block B to have an initial velocity
of 5 m/s as it enters the circular ramp (radius = 5 m) and stop temporarily at a fınal height h. The coefficient of restitution between sphere A and the block B is
0.6. Assume all surfaces are frictionless. Also assume direct impact between A and B.
h
B
Transcribed Image Text:The 100 kg sphere A is released from rest at an angle of a from the vertical, and hits the 10 kg block B (initially at rest), causing block B to have an initial velocity of 5 m/s as it enters the circular ramp (radius = 5 m) and stop temporarily at a fınal height h. The coefficient of restitution between sphere A and the block B is 0.6. Assume all surfaces are frictionless. Also assume direct impact between A and B. h B
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Third law of motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON