that the average energy per oscillator is ΣNnEn N = hv ehv/kT-1 (b) As v→ 0, then Aɛ → 0 and & is essentially continuous. Hence, we should expect the non-classical Planck distribution to go over to the classical Rayleigh-Jeans distribution at low frequencies, where Aɛ→ 0. Show that the Planck radiation 8nhv³ dv c3 ehv/kT-1' formula, Eydv = reduces to the Rayleigh-Jeans formula as v→ 0.
that the average energy per oscillator is ΣNnEn N = hv ehv/kT-1 (b) As v→ 0, then Aɛ → 0 and & is essentially continuous. Hence, we should expect the non-classical Planck distribution to go over to the classical Rayleigh-Jeans distribution at low frequencies, where Aɛ→ 0. Show that the Planck radiation 8nhv³ dv c3 ehv/kT-1' formula, Eydv = reduces to the Rayleigh-Jeans formula as v→ 0.
Related questions
Question
100%
![Planck's principal assumption was that the energies of the electronic
oscillators can have only the values &n=nhv and that Aε = hv.
(a) Further assume that the number of oscillators with the energy
En, Nn, is proportional to e-En/kT at the temperature T, namely
Nn xe-En/kT, where N is the total number of oscillators. Show
N
that the average energy per oscillator is ɛ̃ =
formula, Edv =
formula as v → 0.
ΣNnEn
N
c3 ehv/kT-1'
=
(b) As v→ 0, then Aɛ → 0 and & is essentially continuous. Hence,
we should expect the non-classical Planck distribution to go
over to the classical Rayleigh-Jeans distribution at low
frequencies, where Ac→ 0. Show that the Planck radiation
8πhy3 dv
reduces to the Rayleigh-Jeans
hv
ehv/kT-1](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6b656b52-bb2e-489d-9bef-8a32efc9339f%2F04337318-1012-4b18-a330-11061659c9a0%2F4imqy77_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Planck's principal assumption was that the energies of the electronic
oscillators can have only the values &n=nhv and that Aε = hv.
(a) Further assume that the number of oscillators with the energy
En, Nn, is proportional to e-En/kT at the temperature T, namely
Nn xe-En/kT, where N is the total number of oscillators. Show
N
that the average energy per oscillator is ɛ̃ =
formula, Edv =
formula as v → 0.
ΣNnEn
N
c3 ehv/kT-1'
=
(b) As v→ 0, then Aɛ → 0 and & is essentially continuous. Hence,
we should expect the non-classical Planck distribution to go
over to the classical Rayleigh-Jeans distribution at low
frequencies, where Ac→ 0. Show that the Planck radiation
8πhy3 dv
reduces to the Rayleigh-Jeans
hv
ehv/kT-1
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)