Tetraphosphorus trisulfide, P4S3, is used in the manufacture of "strike anywhere" matches. A 153 g of phosphorus and 215 g of sulfur react directly to form P4S3: What is the balance equation? A. 16, 6, 16 What is the limiting reactant? A. Phosphorus What is the excess reactant? _P4+S8→→ B. 4, 2, 4 B. Sulphur P4S3 C. 8, 3, 8 C. Tetraphophorus trisulfide D. 6, 1, 6
Tetraphosphorus trisulfide, P4S3, is used in the manufacture of "strike anywhere" matches. A 153 g of phosphorus and 215 g of sulfur react directly to form P4S3: What is the balance equation? A. 16, 6, 16 What is the limiting reactant? A. Phosphorus What is the excess reactant? _P4+S8→→ B. 4, 2, 4 B. Sulphur P4S3 C. 8, 3, 8 C. Tetraphophorus trisulfide D. 6, 1, 6
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question

Transcribed Image Text:Tetraphosphorus trisulfide, P4S3, is used in the manufacture of "strike
anywhere" matches. A 153 g of phosphorus and 215 g of sulfur react directly to form
P4S3:
What is the balance equation?
A. 16, 6, 16
What is the limiting reactant?
A. Phosphorus
What is the excess reactant?
_P4+S8→
B. 4, 2, 4
C. 8,3,8
D. 6, 1, 6
C. Tetraphophorus trisulfide
A. Phosphorus
B. Sulphur
C. Tetraphophorus trisulfide
What is the amount of Excess Reactant that will be left if all Limiting Reactant will be
consumed?
A. 19.55 g
B. 15.89 g
C. 16.96 g
D. 17.57 g
What mass of tetraphosphorus trisulfide can be produced by this reaction?
A. 348.19 g
B. 450.90 g
C. 350.77 g
D. 377.50 g
If 87.5% yield of tetraphosphorus trisulfide resulted from this reaction, what is the
actual amount that were produced?
A. 304.93 g
B. 306.92 g
C. 298.69 g
P4S3
B. Sulphur
D. 289.69 g
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY