The objective of this coding problem is the prediction of a proposed metro extension construction project based on the people's opinion. There are three alternatives to choose they are as follows: Eglington-Pickering Line Airport-Vaughan Line Airport-Hamilton Line The datasets are available in the "Test_2-Part_B (Coding Data Analytics Problem)" folder under assignment. Task-1: Metro-Ext.xlsx is the training and test dataset; you will consider 80% of the data for training and 20% for test. Build a (1) Logistic regression (2) KNN and (3) Naïve Bayes model to predict on the test dataset and compute the confusion matrix for each model and compare the result. (PLEASE PLACE CHART IN EXCEL BEFORE CODING AND SAVE AS Metro-Ext.xlsx) Feasibility and Constructability Slopes and Gradients Urban Realm Geology and Soil Stability Land Acquisition Work Opportunities Economy in Movement of People Revenue Generation Access to the Social, Recreational and Emergency Services Neighbourhood Acceptance (Sound, Vibration, etc) Improvement of Quality of Life Convenience in Movement of People Protection of the Ecosystem Pollution (Water, Air, Soil, Visual) Control CO2 Emission Control Conservation of Vegetation and Plants Alternatives 4.80 3.21 2.81 4.34 4.36 3.60 3.85 4.13 4.37 1.38 2.55 3.78 3.52 3.63 2.95 3.42 Eglington-Pickering 3.94 2.84 2.70 4.88 4.49 4.19 4.91 3.34 4.11 1.96 2.29 4.88 3.49 2.95 2.69 3.42 Eglington-Pickering 3.76 3.39 2.49 4.47 3.52 4.07 3.63 4.00 4.02 2.53 2.87 3.79 2.82 3.18 2.89 3.14 Eglington-Pickering 3.75 2.72 2.85 3.85 4.15 4.56 3.82 4.56 4.18 1.59 2.62 4.35 3.55 2.50 2.35 3.07 Eglington-Pickering 4.75 2.97 2.37 3.93 4.44 4.24 3.90 4.06 3.49 1.90 2.63 3.67 3.44 2.73 2.70 2.98 Eglington-Pickering 3.22 2.28 3.03 4.12 4.08 4.62 3.94 3.12 3.59 1.68 2.97 4.65 2.57 3.33 2.20 2.29 Eglington-Pickering 4.15 3.10 3.32 3.83 4.34 4.01 4.75 3.98 4.26 2.06 2.35 4.22 2.97 3.07 2.71 3.26 Eglington-Pickering 3.98 2.99 2.96 3.51 4.50 3.83 3.70 3.90 4.27 2.68 2.85 3.53 2.70 3.28 3.20 2.70 Eglington-Pickering 4.14 2.47 3.01 3.48 4.16 4.33 4.33 3.82 4.16 1.87 2.76 3.68 3.40 3.57 3.33 3.74 Eglington-Pickering 4.09 3.87 3.01 3.95 3.48 3.59 3.93 3.76 3.86 1.59 3.57 3.29 2.60 2.89 3.59 2.91 Eglington-Pickering 3.71 2.59 3.54 3.43 4.80 4.43 4.30 4.20 3.73 2.78 2.81 3.39 2.95 3.33 2.54 2.91 Eglington-Pickering 3.29 3.49 2.53 4.49 4.84 3.42 3.95 3.94 4.47 1.18 2.32 3.47 2.13 3.00 2.23 2.85 Eglington-Pickering 4.19 3.54 2.74 3.58 3.64 4.85 4.20 3.38 3.93 1.80 3.51 4.94 2.59 3.06 2.90 2.72 Eglington-Pickering 4.24 2.97 3.32 4.06 4.16 4.46 4.08 4.51 3.29 2.11 3.12 4.56 3.16 3.05 2.52 2.92 Eglington-Pickering 3.52 2.73 3.57 4.24 3.53 3.65 4.86 3.20 3.86 2.03 3.36 4.43 2.98 2.74 3.01 2.26 Eglington-Pickering 3.13 2.75 2.46 4.50 4.17 4.10 4.45 4.55 3.76 2.40 3.51 3.68 2.90 2.09 3.33 3.48 Eglington-Pickering 3.94 3.35 2.72 4.16 4.00 3.27 3.81 4.64 4.21 1.87 3.18 4.05 3.52 2.50 2.99 2.62 Eglington-Pickering 3.84 2.40 3.56 3.48 4.33 4.80 4.62 4.33 4.07 2.57 2.70 3.46 3.09 2.87 3.67 2.39 Eglington-Pickering 4.69 2.67 2.70 4.00 3.97 3.68 4.73 4.47 3.91 1.75 2.93 3.92 2.36 2.57 2.91 3.38 Eglington-Pickering 4.12 2.39 3.02 3.72 4.66 3.76 3.84 4.71 4.18 1.25 2.40 3.44 3.60 2.91 2.89 2.99 Eglington-Pickering 3.87 2.68 2.39 4.58 3.99 4.57 3.05 4.01 4.31 1.86 2.83 4.47 3.08 2.61 2.67 3.30 Eglington-Pickering 4.05 2.84 3.40 4.43 3.77 4.19 4.05 3.50 4.85 1.79 2.50 3.71 3.32 3.51 2.85 3.58 Eglington-Pickering 4.24 3.20 3.46 3.74 3.99 3.67 4.65 4.06 3.94 1.92 3.41 4.24 2.92 2.42 3.22 3.56 Eglington-Pickering 4.49 3.37 3.46 4.01 3.99 4.27 3.54 3.93 3.60 1.62 3.44 3.88 3.33 2.84 3.04 2.62 Eglington-Pickering 3.62 3.14 3.06 3.66 3.97 4.10 3.85 4.20 4.41 2.11 2.73 3.39 2.71 3.28 3.11 3.10 Eglington-Pickering 3.67 3.46 2.36 3.96 4.70 4.34 4.08 3.86 3.87 1.79 2.44 3.42 2.74 2.96 3.34 3.04 Eglington-Pickering 4.62 3.25 2.87 3.98 4.33 3.81 3.81 4.13 3.66 2.23 3.13 4.02 3.00 2.63 2.97 3.24 Eglington-Pickering 3.61 3.00 3.56 3.57 3.82 3.52 4.59 3.96 3.92 2.31 3.48 3.91 2.98 3.35 2.18 3.76 Eglington-Pickering 4.23 3.82 2.71 3.84 3.97 3.96 4.63 3.64 3.88 2.09 3.18 3.88 2.31 2.14 2.93 2.37 Eglington-Pickering 3.85 2.63 2.70 4.36 3.35 3.60 4.20 3.73 3.80 2.85 3.54 3.21 3.05 3.26 2.90 2.94 Eglington-Pickering 3.83 2.57 2.23 4.75 4.47 4.14 4.25 3.86 4.61 2.22 2.41 4.32 3.30 2.89 3.65 3.00 Eglington-Pickering 3.10 2.75 3.21 3.71 3.78 4.89 4.46 4.52 3.81 1.89 3.78 4.90 2.85 2.63 2.58 3.72 Eglington-Pickering 4.05 3.02 3.02 4.41 3.14 4.28 3.84 3.47 3.99 2.14 3.20 4.25 3.18 2.75 2.80 2.24 Eglington-Pickering 3.78 3.69 2.96 4.79 3.49 4.27 4.36 3.88 3.59 1.93 2.90 4.48 2.48 2.90 2.90 2.92 Eglington-Pickering 4.49 3.41 3.26 3.38 3.84 3.73 3.90 3.79 4.13 2.07 3.65 4.28 2.79 2.53 2.88 2.83 Eglington-Pickering 4.07 2.38 3.35 3.76 4.56 3.98 4.13 4.08 3.71 2.66 2.54 4.39 3.79 3.32 2.39 2.46 Eglington-Pickering 4.07 3.36 3.63 4.05 4.18 3.86 4.55 4.08 4.73 2.18 2.81 4.25 2.29 2.76 2.64 3.19 Eglington-Pickering 4.26 3.15 2.18 3.99 4.45 4.02 3.40 3.70 4.54 1.99 3.45 3.82 2.48 3.08 2.28 3.52 Eglington-Pickering 3.98 2.64 3.45 3.87 4.35 4.22 3.88 3.91 3.65 2.89 2.99 3.90 2.81 3.16 2.84 2.48 Eglington-Pickering 4.18 3.27 2.58 3.77 3.94 3.81 4.06 3.46 3.99 1.75 3.31 3.18 2.70 2.43 3.37 3.10 Eglington-Pickering 3.92 2.64 2.23 3.51 3.96 4.08 4.08 4.28 4.22 2.26 2.73 3.92 2.49 2.99 3.32 2.94 Eglington-Pickering 4.49 3.17 2.14 4.41 4.08 4.19 3.46 4.03 3.18 1.97 3.46 3.43 2.83 2.61 2.96 3.37 Eglington-Pickering 3.39 2.56 2.78 4.55 3.38 4.58 4.15 3.49 4.17 2.01 2.85 4.31 3.05 2.79 2.51 2.63 Eglington-Pickering 3.83 2.91 3.91 4.17 4.02 3.11 3.91 3.96 4.29 2.39 3.80 4.41 3.25 2.57 3.12 3.04 Eglington-Pickering 4.22 3.90 2.93 4.04 3.61 3.83 4.01 4.02 3.83 1.98 2.68 3.42 3.23 3.35 3.28 3.10 Eglington-Pickering
The objective of this coding problem is the prediction of a proposed metro extension construction project based on the people's opinion. There are three alternatives to choose they are as follows:
- Eglington-Pickering Line
- Airport-Vaughan Line
- Airport-Hamilton Line
The datasets are available in the "Test_2-Part_B (Coding Data Analytics Problem)" folder under assignment.
Task-1:
Metro-Ext.xlsx is the training and test dataset; you will consider 80% of the data for training and 20% for test. Build a (1) Logistic regression (2) KNN and (3) Naïve Bayes model to predict on the test dataset and compute the confusion matrix for each model and compare the result.
(PLEASE PLACE CHART IN EXCEL BEFORE CODING AND SAVE AS Metro-Ext.xlsx)
Feasibility and Constructability | Slopes and Gradients | Urban Realm | Geology and Soil Stability | Land Acquisition | Work Opportunities | Economy in Movement of People | Revenue Generation | Access to the Social, Recreational and Emergency Services | Neighbourhood Acceptance (Sound, Vibration, etc) | Improvement of Quality of Life | Convenience in Movement of People | Protection of the Ecosystem | Pollution (Water, Air, Soil, Visual) Control | CO2 Emission Control | Conservation of Vegetation and Plants | Alternatives |
4.80 | 3.21 | 2.81 | 4.34 | 4.36 | 3.60 | 3.85 | 4.13 | 4.37 | 1.38 | 2.55 | 3.78 | 3.52 | 3.63 | 2.95 | 3.42 | Eglington-Pickering |
3.94 | 2.84 | 2.70 | 4.88 | 4.49 | 4.19 | 4.91 | 3.34 | 4.11 | 1.96 | 2.29 | 4.88 | 3.49 | 2.95 | 2.69 | 3.42 | Eglington-Pickering |
3.76 | 3.39 | 2.49 | 4.47 | 3.52 | 4.07 | 3.63 | 4.00 | 4.02 | 2.53 | 2.87 | 3.79 | 2.82 | 3.18 | 2.89 | 3.14 | Eglington-Pickering |
3.75 | 2.72 | 2.85 | 3.85 | 4.15 | 4.56 | 3.82 | 4.56 | 4.18 | 1.59 | 2.62 | 4.35 | 3.55 | 2.50 | 2.35 | 3.07 | Eglington-Pickering |
4.75 | 2.97 | 2.37 | 3.93 | 4.44 | 4.24 | 3.90 | 4.06 | 3.49 | 1.90 | 2.63 | 3.67 | 3.44 | 2.73 | 2.70 | 2.98 | Eglington-Pickering |
3.22 | 2.28 | 3.03 | 4.12 | 4.08 | 4.62 | 3.94 | 3.12 | 3.59 | 1.68 | 2.97 | 4.65 | 2.57 | 3.33 | 2.20 | 2.29 | Eglington-Pickering |
4.15 | 3.10 | 3.32 | 3.83 | 4.34 | 4.01 | 4.75 | 3.98 | 4.26 | 2.06 | 2.35 | 4.22 | 2.97 | 3.07 | 2.71 | 3.26 | Eglington-Pickering |
3.98 | 2.99 | 2.96 | 3.51 | 4.50 | 3.83 | 3.70 | 3.90 | 4.27 | 2.68 | 2.85 | 3.53 | 2.70 | 3.28 | 3.20 | 2.70 | Eglington-Pickering |
4.14 | 2.47 | 3.01 | 3.48 | 4.16 | 4.33 | 4.33 | 3.82 | 4.16 | 1.87 | 2.76 | 3.68 | 3.40 | 3.57 | 3.33 | 3.74 | Eglington-Pickering |
4.09 | 3.87 | 3.01 | 3.95 | 3.48 | 3.59 | 3.93 | 3.76 | 3.86 | 1.59 | 3.57 | 3.29 | 2.60 | 2.89 | 3.59 | 2.91 | Eglington-Pickering |
3.71 | 2.59 | 3.54 | 3.43 | 4.80 | 4.43 | 4.30 | 4.20 | 3.73 | 2.78 | 2.81 | 3.39 | 2.95 | 3.33 | 2.54 | 2.91 | Eglington-Pickering |
3.29 | 3.49 | 2.53 | 4.49 | 4.84 | 3.42 | 3.95 | 3.94 | 4.47 | 1.18 | 2.32 | 3.47 | 2.13 | 3.00 | 2.23 | 2.85 | Eglington-Pickering |
4.19 | 3.54 | 2.74 | 3.58 | 3.64 | 4.85 | 4.20 | 3.38 | 3.93 | 1.80 | 3.51 | 4.94 | 2.59 | 3.06 | 2.90 | 2.72 | Eglington-Pickering |
4.24 | 2.97 | 3.32 | 4.06 | 4.16 | 4.46 | 4.08 | 4.51 | 3.29 | 2.11 | 3.12 | 4.56 | 3.16 | 3.05 | 2.52 | 2.92 | Eglington-Pickering |
3.52 | 2.73 | 3.57 | 4.24 | 3.53 | 3.65 | 4.86 | 3.20 | 3.86 | 2.03 | 3.36 | 4.43 | 2.98 | 2.74 | 3.01 | 2.26 | Eglington-Pickering |
3.13 | 2.75 | 2.46 | 4.50 | 4.17 | 4.10 | 4.45 | 4.55 | 3.76 | 2.40 | 3.51 | 3.68 | 2.90 | 2.09 | 3.33 | 3.48 | Eglington-Pickering |
3.94 | 3.35 | 2.72 | 4.16 | 4.00 | 3.27 | 3.81 | 4.64 | 4.21 | 1.87 | 3.18 | 4.05 | 3.52 | 2.50 | 2.99 | 2.62 | Eglington-Pickering |
3.84 | 2.40 | 3.56 | 3.48 | 4.33 | 4.80 | 4.62 | 4.33 | 4.07 | 2.57 | 2.70 | 3.46 | 3.09 | 2.87 | 3.67 | 2.39 | Eglington-Pickering |
4.69 | 2.67 | 2.70 | 4.00 | 3.97 | 3.68 | 4.73 | 4.47 | 3.91 | 1.75 | 2.93 | 3.92 | 2.36 | 2.57 | 2.91 | 3.38 | Eglington-Pickering |
4.12 | 2.39 | 3.02 | 3.72 | 4.66 | 3.76 | 3.84 | 4.71 | 4.18 | 1.25 | 2.40 | 3.44 | 3.60 | 2.91 | 2.89 | 2.99 | Eglington-Pickering |
3.87 | 2.68 | 2.39 | 4.58 | 3.99 | 4.57 | 3.05 | 4.01 | 4.31 | 1.86 | 2.83 | 4.47 | 3.08 | 2.61 | 2.67 | 3.30 | Eglington-Pickering |
4.05 | 2.84 | 3.40 | 4.43 | 3.77 | 4.19 | 4.05 | 3.50 | 4.85 | 1.79 | 2.50 | 3.71 | 3.32 | 3.51 | 2.85 | 3.58 | Eglington-Pickering |
4.24 | 3.20 | 3.46 | 3.74 | 3.99 | 3.67 | 4.65 | 4.06 | 3.94 | 1.92 | 3.41 | 4.24 | 2.92 | 2.42 | 3.22 | 3.56 | Eglington-Pickering |
4.49 | 3.37 | 3.46 | 4.01 | 3.99 | 4.27 | 3.54 | 3.93 | 3.60 | 1.62 | 3.44 | 3.88 | 3.33 | 2.84 | 3.04 | 2.62 | Eglington-Pickering |
3.62 | 3.14 | 3.06 | 3.66 | 3.97 | 4.10 | 3.85 | 4.20 | 4.41 | 2.11 | 2.73 | 3.39 | 2.71 | 3.28 | 3.11 | 3.10 | Eglington-Pickering |
3.67 | 3.46 | 2.36 | 3.96 | 4.70 | 4.34 | 4.08 | 3.86 | 3.87 | 1.79 | 2.44 | 3.42 | 2.74 | 2.96 | 3.34 | 3.04 | Eglington-Pickering |
4.62 | 3.25 | 2.87 | 3.98 | 4.33 | 3.81 | 3.81 | 4.13 | 3.66 | 2.23 | 3.13 | 4.02 | 3.00 | 2.63 | 2.97 | 3.24 | Eglington-Pickering |
3.61 | 3.00 | 3.56 | 3.57 | 3.82 | 3.52 | 4.59 | 3.96 | 3.92 | 2.31 | 3.48 | 3.91 | 2.98 | 3.35 | 2.18 | 3.76 | Eglington-Pickering |
4.23 | 3.82 | 2.71 | 3.84 | 3.97 | 3.96 | 4.63 | 3.64 | 3.88 | 2.09 | 3.18 | 3.88 | 2.31 | 2.14 | 2.93 | 2.37 | Eglington-Pickering |
3.85 | 2.63 | 2.70 | 4.36 | 3.35 | 3.60 | 4.20 | 3.73 | 3.80 | 2.85 | 3.54 | 3.21 | 3.05 | 3.26 | 2.90 | 2.94 | Eglington-Pickering |
3.83 | 2.57 | 2.23 | 4.75 | 4.47 | 4.14 | 4.25 | 3.86 | 4.61 | 2.22 | 2.41 | 4.32 | 3.30 | 2.89 | 3.65 | 3.00 | Eglington-Pickering |
3.10 | 2.75 | 3.21 | 3.71 | 3.78 | 4.89 | 4.46 | 4.52 | 3.81 | 1.89 | 3.78 | 4.90 | 2.85 | 2.63 | 2.58 | 3.72 | Eglington-Pickering |
4.05 | 3.02 | 3.02 | 4.41 | 3.14 | 4.28 | 3.84 | 3.47 | 3.99 | 2.14 | 3.20 | 4.25 | 3.18 | 2.75 | 2.80 | 2.24 | Eglington-Pickering |
3.78 | 3.69 | 2.96 | 4.79 | 3.49 | 4.27 | 4.36 | 3.88 | 3.59 | 1.93 | 2.90 | 4.48 | 2.48 | 2.90 | 2.90 | 2.92 | Eglington-Pickering |
4.49 | 3.41 | 3.26 | 3.38 | 3.84 | 3.73 | 3.90 | 3.79 | 4.13 | 2.07 | 3.65 | 4.28 | 2.79 | 2.53 | 2.88 | 2.83 | Eglington-Pickering |
4.07 | 2.38 | 3.35 | 3.76 | 4.56 | 3.98 | 4.13 | 4.08 | 3.71 | 2.66 | 2.54 | 4.39 | 3.79 | 3.32 | 2.39 | 2.46 | Eglington-Pickering |
4.07 | 3.36 | 3.63 | 4.05 | 4.18 | 3.86 | 4.55 | 4.08 | 4.73 | 2.18 | 2.81 | 4.25 | 2.29 | 2.76 | 2.64 | 3.19 | Eglington-Pickering |
4.26 | 3.15 | 2.18 | 3.99 | 4.45 | 4.02 | 3.40 | 3.70 | 4.54 | 1.99 | 3.45 | 3.82 | 2.48 | 3.08 | 2.28 | 3.52 | Eglington-Pickering |
3.98 | 2.64 | 3.45 | 3.87 | 4.35 | 4.22 | 3.88 | 3.91 | 3.65 | 2.89 | 2.99 | 3.90 | 2.81 | 3.16 | 2.84 | 2.48 | Eglington-Pickering |
4.18 | 3.27 | 2.58 | 3.77 | 3.94 | 3.81 | 4.06 | 3.46 | 3.99 | 1.75 | 3.31 | 3.18 | 2.70 | 2.43 | 3.37 | 3.10 | Eglington-Pickering |
3.92 | 2.64 | 2.23 | 3.51 | 3.96 | 4.08 | 4.08 | 4.28 | 4.22 | 2.26 | 2.73 | 3.92 | 2.49 | 2.99 | 3.32 | 2.94 | Eglington-Pickering |
4.49 | 3.17 | 2.14 | 4.41 | 4.08 | 4.19 | 3.46 | 4.03 | 3.18 | 1.97 | 3.46 | 3.43 | 2.83 | 2.61 | 2.96 | 3.37 | Eglington-Pickering |
3.39 | 2.56 | 2.78 | 4.55 | 3.38 | 4.58 | 4.15 | 3.49 | 4.17 | 2.01 | 2.85 | 4.31 | 3.05 | 2.79 | 2.51 | 2.63 | Eglington-Pickering |
3.83 | 2.91 | 3.91 | 4.17 | 4.02 | 3.11 | 3.91 | 3.96 | 4.29 | 2.39 | 3.80 | 4.41 | 3.25 | 2.57 | 3.12 | 3.04 | Eglington-Pickering |
4.22 | 3.90 | 2.93 | 4.04 | 3.61 | 3.83 | 4.01 | 4.02 | 3.83 | 1.98 | 2.68 | 3.42 | 3.23 | 3.35 | 3.28 | 3.10 | Eglington-Pickering |
Step by step
Solved in 4 steps with 2 images
Task-2:
Metro-Ext-Predection.xlsx is the dataset for prediction purpose to use. Predict the alternatives to chose based on people's opinion given in this dataset for the above three (Logistic Regression, KNN, and Naïve Bayes) models and compare the result.
Deliverable:
a) Coding files (.py )
b) Report (.docx file) - Discussion of the confusion matrix for both the models& Prediction result for both the models
(PLEASE PLACE CHART IN EXCEL BEFORE CODING AND SAVE AS Metro-Ext-Predection)
Feasibility and Constructability | Slopes and Gradients | Urban Realm | Geology and Soil Stability | Land Acquisition | Work Opportunities | Economy in Movement of People | Revenue Generation | Access to the Social, Recreational and Emergency Services | Neighbourhood Acceptance (Sound, Vibration, etc) | Improvement of Quality of Life | Convenience in Movement of People | Protection of the Ecosystem | Pollution (Water, Air, Soil, Visual) Control | CO2 Emission Control | Conservation of Vegetation and Plants |
4.1 | 3.1 | 3.2 | 4.3 | 3.1 | 3.5 | 3.3 | 3.9 | 3.9 | 2.8 | 3.1 | 3.7 | 3.1 | 3.4 | 2.4 | 2.9 |
3.7 | 2.8 | 2.9 | 4.1 | 3.9 | 4.5 | 4.3 | 3.7 | 3.6 | 2.1 | 3.3 | 4.3 | 2.8 | 2.9 | 3.0 | 3.0 |
4.1 | 3.2 | 2.4 | 3.8 | 3.4 | 4.3 | 4.7 | 4.2 | 4.7 | 1.9 | 2.4 | 4.5 | 3.7 | 3.6 | 3.4 | 2.3 |
3.6 | 3.2 | 2.2 | 4.0 | 4.0 | 4.6 | 3.9 | 3.3 | 4.4 | 2.0 | 3.5 | 3.9 | 3.2 | 2.9 | 2.9 | 2.4 |
3.7 | 3.0 | 3.3 | 3.6 | 4.1 | 3.5 | 3.9 | 3.9 | 4.8 | 1.9 | 3.3 | 4.2 | 2.6 | 2.4 | 2.6 | 2.8 |
3.9 | 2.5 | 3.3 | 4.5 | 3.5 | 3.4 | 3.8 | 3.7 | 3.5 | 1.7 | 3.0 | 4.5 | 3.0 | 3.5 | 2.9 | 2.6 |
4.8 | 3.9 | 2.9 | 4.5 | 3.4 | 4.3 | 4.5 | 4.5 | 3.8 | 2.0 | 3.1 | 4.7 | 3.1 | 2.9 | 2.5 | 3.7 |
3.3 | 3.1 | 3.0 | 4.1 | 4.1 | 4.4 | 4.4 | 3.6 | 4.0 | 1.9 | 2.9 | 4.1 | 3.4 | 2.2 | 3.7 | 3.3 |
4.7 | 3.3 | 3.2 | 3.9 | 4.0 | 4.2 | 4.2 | 3.8 | 4.0 | 2.3 | 3.0 | 4.5 | 3.1 | 3.1 | 3.0 | 2.7 |
4.2 | 3.0 | 2.9 | 3.7 | 3.9 | 3.7 | 3.2 | 4.0 | 4.6 | 1.9 | 2.4 | 4.4 | 2.7 | 3.0 | 3.4 | 2.9 |
4.3 | 2.7 | 3.2 | 3.8 | 3.9 | 4.2 | 4.0 | 3.8 | 4.3 | 1.7 | 3.0 | 4.2 | 3.5 | 2.8 | 3.1 | 2.2 |
4.2 | 3.2 | 3.0 | 4.3 | 4.0 | 4.0 | 4.4 | 4.9 | 3.8 | 1.5 | 3.4 | 3.4 | 2.9 | 2.6 | 3.3 | 3.5 |
4.1 | 3.2 | 3.0 | 3.9 | 3.8 | 4.2 | 4.2 | 4.0 | 3.7 | 1.8 | 2.7 | 4.3 | 3.2 | 2.3 | 3.8 | 3.4 |
4.0 | 2.7 | 3.6 | 4.5 | 3.9 | 3.8 | 3.3 | 4.0 | 4.2 | 2.5 | 2.7 | 3.5 | 3.2 | 2.8 | 3.5 | 3.9 |
3.9 | 3.3 | 2.5 | 4.0 | 4.7 | 3.7 | 3.9 | 3.9 | 4.1 | 1.5 | 3.5 | 4.0 | 3.1 | 2.6 | 3.0 | 3.0 |
3.5 | 3.4 | 2.6 | 3.3 | 4.0 | 3.9 | 4.4 | 4.4 | 4.3 | 2.2 | 2.8 | 4.4 | 3.1 | 3.4 | 3.0 | 3.2 |
2.8 | 2.9 | 3.6 | 2.4 | 2.9 | 4.2 | 2.9 | 2.3 | 2.2 | 2.3 | 2.8 | 2.9 | 2.5 | 3.5 | 1.4 | 2.5 |
3.0 | 2.0 | 3.2 | 1.7 | 2.3 | 4.1 | 2.1 | 2.3 | 3.3 | 1.9 | 2.4 | 2.3 | 2.6 | 3.2 | 2.0 | 3.4 |
3.5 | 1.5 | 2.9 | 2.1 | 3.3 | 3.4 | 2.7 | 3.4 | 3.2 | 1.7 | 3.6 | 2.5 | 3.0 | 3.1 | 2.4 | 3.6 |
3.0 | 2.3 | 2.9 | 1.4 | 3.5 | 3.6 | 3.0 | 3.0 | 3.4 | 2.0 | 2.8 | 3.5 | 2.7 | 3.0 | 1.4 | 2.6 |
3.2 | 2.0 | 2.6 | 2.4 | 3.4 | 3.7 | 2.3 | 3.3 | 3.9 | 2.7 | 3.2 | 3.4 | 2.9 | 2.6 | 1.3 | 3.1 |
2.1 | 2.2 | 3.3 | 1.5 | 2.7 | 3.7 | 3.5 | 3.1 | 3.1 | 2.4 | 2.9 | 2.7 | 3.3 | 2.9 | 1.7 | 2.8 |
3.5 | 2.4 | 3.7 | 2.8 | 3.0 | 4.8 | 3.3 | 3.6 | 3.3 | 2.4 | 3.1 | 3.1 | 3.4 | 3.0 | 1.8 | 2.8 |
2.6 | 2.0 | 2.3 | 2.0 | 3.3 | 3.8 | 3.1 | 3.1 | 3.0 | 1.9 | 3.8 | 2.6 | 2.7 | 2.6 | 2.4 | 2.7 |
3.8 | 2.3 | 3.4 | 2.5 | 3.6 | 4.2 | 3.1 | 2.6 | 2.6 | 2.5 | 2.7 | 2.7 | 3.0 | 2.9 | 1.3 | 3.8 |
3.3 | 2.4 | 2.3 | 2.2 | 2.9 | 3.7 | 2.6 | 3.0 | 2.8 | 1.3 | 3.7 | 2.8 | 2.7 | 3.1 | 2.1 | 2.3 |
2.7 | 1.5 | 2.3 | 1.6 | 3.3 | 3.5 | 3.1 | 2.5 | 3.1 | 1.9 | 3.6 | 3.6 | 3.0 | 3.1 | 2.0 | 3.3 |
3.6 | 2.0 | 2.9 | 2.5 | 3.6 | 3.3 | 2.7 | 3.1 | 2.7 | 2.1 | 3.1 | 2.3 | 3.8 | 3.0 | 1.4 | 2.8 |
2.6 | 1.8 | 3.5 | 1.8 | 3.5 | 4.3 | 3.1 | 3.6 | 3.2 | 2.0 | 3.3 | 2.7 | 3.2 | 3.9 | 2.0 | 3.8 |
3.9 | 1.8 | 3.0 | 2.0 | 2.2 | 3.3 | 2.3 | 3.2 | 2.8 | 2.4 | 2.8 | 2.6 | 3.0 | 2.6 | 1.5 | 3.1 |
3.4 | 1.8 | 2.4 | 1.7 | 2.7 | 3.6 | 3.8 | 2.8 | 3.0 | 1.7 | 3.3 | 2.5 | 3.7 | 3.0 | 1.8 | 3.6 |
1.2 | 3.3 | 2.8 | 3.1 | 2.0 | 3.2 | 3.2 | 2.9 | 2.0 | 1.7 | 2.2 | 2.8 | 3.1 | 3.4 | 1.9 | 1.1 |
1.8 | 2.6 | 2.9 | 3.0 | 2.7 | 3.8 | 2.8 | 2.8 | 2.4 | 1.8 | 3.2 | 2.9 | 3.1 | 2.5 | 1.9 | 2.9 |
1.9 | 3.2 | 3.0 | 3.9 | 2.7 | 4.3 | 2.6 | 2.9 | 2.2 | 1.9 | 3.3 | 2.4 | 2.8 | 3.2 | 1.9 | 1.8 |
2.3 | 3.2 | 3.0 | 3.5 | 2.1 | 3.5 | 2.3 | 2.7 | 2.5 | 1.6 | 3.6 | 2.5 | 3.8 | 2.4 | 2.5 | 1.7 |
2.2 | 2.9 | 2.3 | 3.3 | 2.1 | 3.9 | 3.0 | 2.9 | 1.2 | 2.3 | 3.3 | 3.1 | 2.2 | 2.8 | 2.7 | 1.9 |
2.2 | 3.3 | 3.1 | 2.5 | 1.5 | 4.3 | 3.9 | 3.9 | 2.1 | 1.7 | 3.1 | 3.0 | 2.8 | 3.0 | 2.7 | 2.2 |
1.7 | 3.1 | 2.3 | 2.4 | 2.1 | 3.8 | 3.3 | 3.5 | 1.4 | 2.4 | 2.7 | 2.4 | 3.5 | 3.0 | 1.4 | 2.0 |
2.4 | 3.2 | 2.8 | 3.3 | 1.5 | 4.0 | 3.0 | 3.5 | 2.4 | 1.8 | 3.3 | 2.8 | 3.6 | 2.9 | 2.2 | 2.4 |
2.1 | 3.2 | 2.7 | 2.6 | 2.0 | 3.8 | 2.9 | 3.2 | 1.4 | 1.6 | 3.8 | 3.2 | 3.3 | 3.7 | 1.4 | 2.0 |
2.0 | 3.0 | 3.1 | 3.2 | 1.9 | 3.8 | 2.8 | 2.9 | 2.2 | 2.2 | 3.6 | 3.0 | 2.5 | 2.4 | 1.7 | 2.2 |
2.4 | 3.0 | 2.5 | 3.0 | 2.3 | 4.2 | 2.8 | 3.1 | 2.3 | 2.1 | 2.9 | 3.4 | 3.2 | 3.0 | 2.2 | 1.9 |
1.8 | 2.7 | 2.7 | 3.2 | 2.4 | 3.4 | 2.5 | 3.3 | 2.5 | 1.5 | 2.9 | 2.5 | 3.3 | 3.8 | 2.1 | 2.0 |
1.8 | 3.4 | 2.8 | 3.1 | 2.1 | 4.3 | 2.7 | 3.4 | 2.7 | 2.5 | 3.1 | 2.3 | 3.1 | 3.4 | 1.8 | 2.3 |
2.0 | 3.7 | 2.7 | 3.0 | 2.1 | 4.8 | 3.2 | 3.0 | 1.9 | 2.1 | 2.6 | 2.4 | 2.9 | 2.6 | 2.0 | 1.5 |
1.8 | 2.9 | 2.9 | 3.1 | 1.8 | 3.9 | 3.8 | 3.4 | 2.1 | 1.8 | 4.0 | 2.4 | 2.8 | 3.7 | 2.9 | 2.9 |