The objective of this coding problem is the prediction of a proposed metro extension construction project based on the people's opinion. There are three alternatives to choose they are as follows: Eglington-Pickering Line Airport-Vaughan Line Airport-Hamilton Line The datasets are available in the "Test_2-Part_B (Coding Data Analytics Problem)" folder under assignment.     Task-1: Metro-Ext.xlsx is the training and test dataset; you will consider 80% of the data for training and 20% for test. Build a (1) Logistic regression (2) KNN and (3) Naïve Bayes model to predict on the test dataset and compute the confusion matrix for each model and compare the result.   (PLEASE PLACE CHART IN EXCEL BEFORE CODING AND SAVE AS Metro-Ext.xlsx)   Feasibility and Constructability Slopes and Gradients Urban Realm Geology and Soil Stability Land Acquisition Work Opportunities Economy in Movement of People Revenue Generation Access to the Social, Recreational and Emergency Services Neighbourhood Acceptance (Sound, Vibration, etc) Improvement of Quality of Life Convenience in Movement of People Protection of the Ecosystem Pollution (Water, Air, Soil, Visual) Control CO2 Emission Control Conservation of Vegetation and Plants Alternatives 4.80 3.21 2.81 4.34 4.36 3.60 3.85 4.13 4.37 1.38 2.55 3.78 3.52 3.63 2.95 3.42 Eglington-Pickering 3.94 2.84 2.70 4.88 4.49 4.19 4.91 3.34 4.11 1.96 2.29 4.88 3.49 2.95 2.69 3.42 Eglington-Pickering 3.76 3.39 2.49 4.47 3.52 4.07 3.63 4.00 4.02 2.53 2.87 3.79 2.82 3.18 2.89 3.14 Eglington-Pickering 3.75 2.72 2.85 3.85 4.15 4.56 3.82 4.56 4.18 1.59 2.62 4.35 3.55 2.50 2.35 3.07 Eglington-Pickering 4.75 2.97 2.37 3.93 4.44 4.24 3.90 4.06 3.49 1.90 2.63 3.67 3.44 2.73 2.70 2.98 Eglington-Pickering 3.22 2.28 3.03 4.12 4.08 4.62 3.94 3.12 3.59 1.68 2.97 4.65 2.57 3.33 2.20 2.29 Eglington-Pickering 4.15 3.10 3.32 3.83 4.34 4.01 4.75 3.98 4.26 2.06 2.35 4.22 2.97 3.07 2.71 3.26 Eglington-Pickering 3.98 2.99 2.96 3.51 4.50 3.83 3.70 3.90 4.27 2.68 2.85 3.53 2.70 3.28 3.20 2.70 Eglington-Pickering 4.14 2.47 3.01 3.48 4.16 4.33 4.33 3.82 4.16 1.87 2.76 3.68 3.40 3.57 3.33 3.74 Eglington-Pickering 4.09 3.87 3.01 3.95 3.48 3.59 3.93 3.76 3.86 1.59 3.57 3.29 2.60 2.89 3.59 2.91 Eglington-Pickering 3.71 2.59 3.54 3.43 4.80 4.43 4.30 4.20 3.73 2.78 2.81 3.39 2.95 3.33 2.54 2.91 Eglington-Pickering 3.29 3.49 2.53 4.49 4.84 3.42 3.95 3.94 4.47 1.18 2.32 3.47 2.13 3.00 2.23 2.85 Eglington-Pickering 4.19 3.54 2.74 3.58 3.64 4.85 4.20 3.38 3.93 1.80 3.51 4.94 2.59 3.06 2.90 2.72 Eglington-Pickering 4.24 2.97 3.32 4.06 4.16 4.46 4.08 4.51 3.29 2.11 3.12 4.56 3.16 3.05 2.52 2.92 Eglington-Pickering 3.52 2.73 3.57 4.24 3.53 3.65 4.86 3.20 3.86 2.03 3.36 4.43 2.98 2.74 3.01 2.26 Eglington-Pickering 3.13 2.75 2.46 4.50 4.17 4.10 4.45 4.55 3.76 2.40 3.51 3.68 2.90 2.09 3.33 3.48 Eglington-Pickering 3.94 3.35 2.72 4.16 4.00 3.27 3.81 4.64 4.21 1.87 3.18 4.05 3.52 2.50 2.99 2.62 Eglington-Pickering 3.84 2.40 3.56 3.48 4.33 4.80 4.62 4.33 4.07 2.57 2.70 3.46 3.09 2.87 3.67 2.39 Eglington-Pickering 4.69 2.67 2.70 4.00 3.97 3.68 4.73 4.47 3.91 1.75 2.93 3.92 2.36 2.57 2.91 3.38 Eglington-Pickering 4.12 2.39 3.02 3.72 4.66 3.76 3.84 4.71 4.18 1.25 2.40 3.44 3.60 2.91 2.89 2.99 Eglington-Pickering 3.87 2.68 2.39 4.58 3.99 4.57 3.05 4.01 4.31 1.86 2.83 4.47 3.08 2.61 2.67 3.30 Eglington-Pickering 4.05 2.84 3.40 4.43 3.77 4.19 4.05 3.50 4.85 1.79 2.50 3.71 3.32 3.51 2.85 3.58 Eglington-Pickering 4.24 3.20 3.46 3.74 3.99 3.67 4.65 4.06 3.94 1.92 3.41 4.24 2.92 2.42 3.22 3.56 Eglington-Pickering 4.49 3.37 3.46 4.01 3.99 4.27 3.54 3.93 3.60 1.62 3.44 3.88 3.33 2.84 3.04 2.62 Eglington-Pickering 3.62 3.14 3.06 3.66 3.97 4.10 3.85 4.20 4.41 2.11 2.73 3.39 2.71 3.28 3.11 3.10 Eglington-Pickering 3.67 3.46 2.36 3.96 4.70 4.34 4.08 3.86 3.87 1.79 2.44 3.42 2.74 2.96 3.34 3.04 Eglington-Pickering 4.62 3.25 2.87 3.98 4.33 3.81 3.81 4.13 3.66 2.23 3.13 4.02 3.00 2.63 2.97 3.24 Eglington-Pickering 3.61 3.00 3.56 3.57 3.82 3.52 4.59 3.96 3.92 2.31 3.48 3.91 2.98 3.35 2.18 3.76 Eglington-Pickering 4.23 3.82 2.71 3.84 3.97 3.96 4.63 3.64 3.88 2.09 3.18 3.88 2.31 2.14 2.93 2.37 Eglington-Pickering 3.85 2.63 2.70 4.36 3.35 3.60 4.20 3.73 3.80 2.85 3.54 3.21 3.05 3.26 2.90 2.94 Eglington-Pickering 3.83 2.57 2.23 4.75 4.47 4.14 4.25 3.86 4.61 2.22 2.41 4.32 3.30 2.89 3.65 3.00 Eglington-Pickering 3.10 2.75 3.21 3.71 3.78 4.89 4.46 4.52 3.81 1.89 3.78 4.90 2.85 2.63 2.58 3.72 Eglington-Pickering 4.05 3.02 3.02 4.41 3.14 4.28 3.84 3.47 3.99 2.14 3.20 4.25 3.18 2.75 2.80 2.24 Eglington-Pickering 3.78 3.69 2.96 4.79 3.49 4.27 4.36 3.88 3.59 1.93 2.90 4.48 2.48 2.90 2.90 2.92 Eglington-Pickering 4.49 3.41 3.26 3.38 3.84 3.73 3.90 3.79 4.13 2.07 3.65 4.28 2.79 2.53 2.88 2.83 Eglington-Pickering 4.07 2.38 3.35 3.76 4.56 3.98 4.13 4.08 3.71 2.66 2.54 4.39 3.79 3.32 2.39 2.46 Eglington-Pickering 4.07 3.36 3.63 4.05 4.18 3.86 4.55 4.08 4.73 2.18 2.81 4.25 2.29 2.76 2.64 3.19 Eglington-Pickering 4.26 3.15 2.18 3.99 4.45 4.02 3.40 3.70 4.54 1.99 3.45 3.82 2.48 3.08 2.28 3.52 Eglington-Pickering 3.98 2.64 3.45 3.87 4.35 4.22 3.88 3.91 3.65 2.89 2.99 3.90 2.81 3.16 2.84 2.48 Eglington-Pickering 4.18 3.27 2.58 3.77 3.94 3.81 4.06 3.46 3.99 1.75 3.31 3.18 2.70 2.43 3.37 3.10 Eglington-Pickering 3.92 2.64 2.23 3.51 3.96 4.08 4.08 4.28 4.22 2.26 2.73 3.92 2.49 2.99 3.32 2.94 Eglington-Pickering 4.49 3.17 2.14 4.41 4.08 4.19 3.46 4.03 3.18 1.97 3.46 3.43 2.83 2.61 2.96 3.37 Eglington-Pickering 3.39 2.56 2.78 4.55 3.38 4.58 4.15 3.49 4.17 2.01 2.85 4.31 3.05 2.79 2.51 2.63 Eglington-Pickering 3.83 2.91 3.91 4.17 4.02 3.11 3.91 3.96 4.29 2.39 3.80 4.41 3.25 2.57 3.12 3.04 Eglington-Pickering 4.22 3.90 2.93 4.04 3.61 3.83 4.01 4.02 3.83 1.98 2.68 3.42 3.23 3.35 3.28 3.10 Eglington-Pickering

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

The objective of this coding problem is the prediction of a proposed metro extension construction project based on the people's opinion. There are three alternatives to choose they are as follows:

  • Eglington-Pickering Line
  • Airport-Vaughan Line
  • Airport-Hamilton Line

The datasets are available in the "Test_2-Part_B (Coding Data Analytics Problem)" folder under assignment.  

 

Task-1:

Metro-Ext.xlsx is the training and test dataset; you will consider 80% of the data for training and 20% for test. Build a (1) Logistic regression (2) KNN and (3) Naïve Bayes model to predict on the test dataset and compute the confusion matrix for each model and compare the result.

 

(PLEASE PLACE CHART IN EXCEL BEFORE CODING AND SAVE AS Metro-Ext.xlsx)

 

Feasibility and Constructability Slopes and Gradients Urban Realm Geology and Soil Stability Land Acquisition Work Opportunities Economy in Movement of People Revenue Generation Access to the Social, Recreational and Emergency Services Neighbourhood Acceptance (Sound, Vibration, etc) Improvement of Quality of Life Convenience in Movement of People Protection of the Ecosystem Pollution (Water, Air, Soil, Visual) Control CO2 Emission Control Conservation of Vegetation and Plants Alternatives
4.80 3.21 2.81 4.34 4.36 3.60 3.85 4.13 4.37 1.38 2.55 3.78 3.52 3.63 2.95 3.42 Eglington-Pickering
3.94 2.84 2.70 4.88 4.49 4.19 4.91 3.34 4.11 1.96 2.29 4.88 3.49 2.95 2.69 3.42 Eglington-Pickering
3.76 3.39 2.49 4.47 3.52 4.07 3.63 4.00 4.02 2.53 2.87 3.79 2.82 3.18 2.89 3.14 Eglington-Pickering
3.75 2.72 2.85 3.85 4.15 4.56 3.82 4.56 4.18 1.59 2.62 4.35 3.55 2.50 2.35 3.07 Eglington-Pickering
4.75 2.97 2.37 3.93 4.44 4.24 3.90 4.06 3.49 1.90 2.63 3.67 3.44 2.73 2.70 2.98 Eglington-Pickering
3.22 2.28 3.03 4.12 4.08 4.62 3.94 3.12 3.59 1.68 2.97 4.65 2.57 3.33 2.20 2.29 Eglington-Pickering
4.15 3.10 3.32 3.83 4.34 4.01 4.75 3.98 4.26 2.06 2.35 4.22 2.97 3.07 2.71 3.26 Eglington-Pickering
3.98 2.99 2.96 3.51 4.50 3.83 3.70 3.90 4.27 2.68 2.85 3.53 2.70 3.28 3.20 2.70 Eglington-Pickering
4.14 2.47 3.01 3.48 4.16 4.33 4.33 3.82 4.16 1.87 2.76 3.68 3.40 3.57 3.33 3.74 Eglington-Pickering
4.09 3.87 3.01 3.95 3.48 3.59 3.93 3.76 3.86 1.59 3.57 3.29 2.60 2.89 3.59 2.91 Eglington-Pickering
3.71 2.59 3.54 3.43 4.80 4.43 4.30 4.20 3.73 2.78 2.81 3.39 2.95 3.33 2.54 2.91 Eglington-Pickering
3.29 3.49 2.53 4.49 4.84 3.42 3.95 3.94 4.47 1.18 2.32 3.47 2.13 3.00 2.23 2.85 Eglington-Pickering
4.19 3.54 2.74 3.58 3.64 4.85 4.20 3.38 3.93 1.80 3.51 4.94 2.59 3.06 2.90 2.72 Eglington-Pickering
4.24 2.97 3.32 4.06 4.16 4.46 4.08 4.51 3.29 2.11 3.12 4.56 3.16 3.05 2.52 2.92 Eglington-Pickering
3.52 2.73 3.57 4.24 3.53 3.65 4.86 3.20 3.86 2.03 3.36 4.43 2.98 2.74 3.01 2.26 Eglington-Pickering
3.13 2.75 2.46 4.50 4.17 4.10 4.45 4.55 3.76 2.40 3.51 3.68 2.90 2.09 3.33 3.48 Eglington-Pickering
3.94 3.35 2.72 4.16 4.00 3.27 3.81 4.64 4.21 1.87 3.18 4.05 3.52 2.50 2.99 2.62 Eglington-Pickering
3.84 2.40 3.56 3.48 4.33 4.80 4.62 4.33 4.07 2.57 2.70 3.46 3.09 2.87 3.67 2.39 Eglington-Pickering
4.69 2.67 2.70 4.00 3.97 3.68 4.73 4.47 3.91 1.75 2.93 3.92 2.36 2.57 2.91 3.38 Eglington-Pickering
4.12 2.39 3.02 3.72 4.66 3.76 3.84 4.71 4.18 1.25 2.40 3.44 3.60 2.91 2.89 2.99 Eglington-Pickering
3.87 2.68 2.39 4.58 3.99 4.57 3.05 4.01 4.31 1.86 2.83 4.47 3.08 2.61 2.67 3.30 Eglington-Pickering
4.05 2.84 3.40 4.43 3.77 4.19 4.05 3.50 4.85 1.79 2.50 3.71 3.32 3.51 2.85 3.58 Eglington-Pickering
4.24 3.20 3.46 3.74 3.99 3.67 4.65 4.06 3.94 1.92 3.41 4.24 2.92 2.42 3.22 3.56 Eglington-Pickering
4.49 3.37 3.46 4.01 3.99 4.27 3.54 3.93 3.60 1.62 3.44 3.88 3.33 2.84 3.04 2.62 Eglington-Pickering
3.62 3.14 3.06 3.66 3.97 4.10 3.85 4.20 4.41 2.11 2.73 3.39 2.71 3.28 3.11 3.10 Eglington-Pickering
3.67 3.46 2.36 3.96 4.70 4.34 4.08 3.86 3.87 1.79 2.44 3.42 2.74 2.96 3.34 3.04 Eglington-Pickering
4.62 3.25 2.87 3.98 4.33 3.81 3.81 4.13 3.66 2.23 3.13 4.02 3.00 2.63 2.97 3.24 Eglington-Pickering
3.61 3.00 3.56 3.57 3.82 3.52 4.59 3.96 3.92 2.31 3.48 3.91 2.98 3.35 2.18 3.76 Eglington-Pickering
4.23 3.82 2.71 3.84 3.97 3.96 4.63 3.64 3.88 2.09 3.18 3.88 2.31 2.14 2.93 2.37 Eglington-Pickering
3.85 2.63 2.70 4.36 3.35 3.60 4.20 3.73 3.80 2.85 3.54 3.21 3.05 3.26 2.90 2.94 Eglington-Pickering
3.83 2.57 2.23 4.75 4.47 4.14 4.25 3.86 4.61 2.22 2.41 4.32 3.30 2.89 3.65 3.00 Eglington-Pickering
3.10 2.75 3.21 3.71 3.78 4.89 4.46 4.52 3.81 1.89 3.78 4.90 2.85 2.63 2.58 3.72 Eglington-Pickering
4.05 3.02 3.02 4.41 3.14 4.28 3.84 3.47 3.99 2.14 3.20 4.25 3.18 2.75 2.80 2.24 Eglington-Pickering
3.78 3.69 2.96 4.79 3.49 4.27 4.36 3.88 3.59 1.93 2.90 4.48 2.48 2.90 2.90 2.92 Eglington-Pickering
4.49 3.41 3.26 3.38 3.84 3.73 3.90 3.79 4.13 2.07 3.65 4.28 2.79 2.53 2.88 2.83 Eglington-Pickering
4.07 2.38 3.35 3.76 4.56 3.98 4.13 4.08 3.71 2.66 2.54 4.39 3.79 3.32 2.39 2.46 Eglington-Pickering
4.07 3.36 3.63 4.05 4.18 3.86 4.55 4.08 4.73 2.18 2.81 4.25 2.29 2.76 2.64 3.19 Eglington-Pickering
4.26 3.15 2.18 3.99 4.45 4.02 3.40 3.70 4.54 1.99 3.45 3.82 2.48 3.08 2.28 3.52 Eglington-Pickering
3.98 2.64 3.45 3.87 4.35 4.22 3.88 3.91 3.65 2.89 2.99 3.90 2.81 3.16 2.84 2.48 Eglington-Pickering
4.18 3.27 2.58 3.77 3.94 3.81 4.06 3.46 3.99 1.75 3.31 3.18 2.70 2.43 3.37 3.10 Eglington-Pickering
3.92 2.64 2.23 3.51 3.96 4.08 4.08 4.28 4.22 2.26 2.73 3.92 2.49 2.99 3.32 2.94 Eglington-Pickering
4.49 3.17 2.14 4.41 4.08 4.19 3.46 4.03 3.18 1.97 3.46 3.43 2.83 2.61 2.96 3.37 Eglington-Pickering
3.39 2.56 2.78 4.55 3.38 4.58 4.15 3.49 4.17 2.01 2.85 4.31 3.05 2.79 2.51 2.63 Eglington-Pickering
3.83 2.91 3.91 4.17 4.02 3.11 3.91 3.96 4.29 2.39 3.80 4.41 3.25 2.57 3.12 3.04 Eglington-Pickering
4.22 3.90 2.93 4.04 3.61 3.83 4.01 4.02 3.83 1.98 2.68 3.42 3.23 3.35 3.28 3.10 Eglington-Pickering 
Expert Solution
steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

Task-2:

Metro-Ext-Predection.xlsx is the dataset for prediction purpose to use. Predict the alternatives to chose based on people's opinion given in this dataset for the above three (Logistic Regression, KNN, and Naïve Bayes) models and compare the result.

Deliverable: 

a) Coding files (.py )

b) Report (.docx file) - Discussion of the confusion matrix for both the models& Prediction result for both the models

(PLEASE PLACE CHART IN EXCEL BEFORE CODING AND SAVE AS Metro-Ext-Predection)

Feasibility and Constructability Slopes and Gradients Urban Realm Geology and Soil Stability Land Acquisition Work Opportunities Economy in Movement of People Revenue Generation Access to the Social, Recreational and Emergency Services Neighbourhood Acceptance (Sound, Vibration, etc) Improvement of Quality of Life Convenience in Movement of People Protection of the Ecosystem Pollution (Water, Air, Soil, Visual) Control CO2 Emission Control Conservation of Vegetation and Plants
4.1 3.1 3.2 4.3 3.1 3.5 3.3 3.9 3.9 2.8 3.1 3.7 3.1 3.4 2.4 2.9
3.7 2.8 2.9 4.1 3.9 4.5 4.3 3.7 3.6 2.1 3.3 4.3 2.8 2.9 3.0 3.0
4.1 3.2 2.4 3.8 3.4 4.3 4.7 4.2 4.7 1.9 2.4 4.5 3.7 3.6 3.4 2.3
3.6 3.2 2.2 4.0 4.0 4.6 3.9 3.3 4.4 2.0 3.5 3.9 3.2 2.9 2.9 2.4
3.7 3.0 3.3 3.6 4.1 3.5 3.9 3.9 4.8 1.9 3.3 4.2 2.6 2.4 2.6 2.8
3.9 2.5 3.3 4.5 3.5 3.4 3.8 3.7 3.5 1.7 3.0 4.5 3.0 3.5 2.9 2.6
4.8 3.9 2.9 4.5 3.4 4.3 4.5 4.5 3.8 2.0 3.1 4.7 3.1 2.9 2.5 3.7
3.3 3.1 3.0 4.1 4.1 4.4 4.4 3.6 4.0 1.9 2.9 4.1 3.4 2.2 3.7 3.3
4.7 3.3 3.2 3.9 4.0 4.2 4.2 3.8 4.0 2.3 3.0 4.5 3.1 3.1 3.0 2.7
4.2 3.0 2.9 3.7 3.9 3.7 3.2 4.0 4.6 1.9 2.4 4.4 2.7 3.0 3.4 2.9
4.3 2.7 3.2 3.8 3.9 4.2 4.0 3.8 4.3 1.7 3.0 4.2 3.5 2.8 3.1 2.2
4.2 3.2 3.0 4.3 4.0 4.0 4.4 4.9 3.8 1.5 3.4 3.4 2.9 2.6 3.3 3.5
4.1 3.2 3.0 3.9 3.8 4.2 4.2 4.0 3.7 1.8 2.7 4.3 3.2 2.3 3.8 3.4
4.0 2.7 3.6 4.5 3.9 3.8 3.3 4.0 4.2 2.5 2.7 3.5 3.2 2.8 3.5 3.9
3.9 3.3 2.5 4.0 4.7 3.7 3.9 3.9 4.1 1.5 3.5 4.0 3.1 2.6 3.0 3.0
3.5 3.4 2.6 3.3 4.0 3.9 4.4 4.4 4.3 2.2 2.8 4.4 3.1 3.4 3.0 3.2
2.8 2.9 3.6 2.4 2.9 4.2 2.9 2.3 2.2 2.3 2.8 2.9 2.5 3.5 1.4 2.5
3.0 2.0 3.2 1.7 2.3 4.1 2.1 2.3 3.3 1.9 2.4 2.3 2.6 3.2 2.0 3.4
3.5 1.5 2.9 2.1 3.3 3.4 2.7 3.4 3.2 1.7 3.6 2.5 3.0 3.1 2.4 3.6
3.0 2.3 2.9 1.4 3.5 3.6 3.0 3.0 3.4 2.0 2.8 3.5 2.7 3.0 1.4 2.6
3.2 2.0 2.6 2.4 3.4 3.7 2.3 3.3 3.9 2.7 3.2 3.4 2.9 2.6 1.3 3.1
2.1 2.2 3.3 1.5 2.7 3.7 3.5 3.1 3.1 2.4 2.9 2.7 3.3 2.9 1.7 2.8
3.5 2.4 3.7 2.8 3.0 4.8 3.3 3.6 3.3 2.4 3.1 3.1 3.4 3.0 1.8 2.8
2.6 2.0 2.3 2.0 3.3 3.8 3.1 3.1 3.0 1.9 3.8 2.6 2.7 2.6 2.4 2.7
3.8 2.3 3.4 2.5 3.6 4.2 3.1 2.6 2.6 2.5 2.7 2.7 3.0 2.9 1.3 3.8
3.3 2.4 2.3 2.2 2.9 3.7 2.6 3.0 2.8 1.3 3.7 2.8 2.7 3.1 2.1 2.3
2.7 1.5 2.3 1.6 3.3 3.5 3.1 2.5 3.1 1.9 3.6 3.6 3.0 3.1 2.0 3.3
3.6 2.0 2.9 2.5 3.6 3.3 2.7 3.1 2.7 2.1 3.1 2.3 3.8 3.0 1.4 2.8
2.6 1.8 3.5 1.8 3.5 4.3 3.1 3.6 3.2 2.0 3.3 2.7 3.2 3.9 2.0 3.8
3.9 1.8 3.0 2.0 2.2 3.3 2.3 3.2 2.8 2.4 2.8 2.6 3.0 2.6 1.5 3.1
3.4 1.8 2.4 1.7 2.7 3.6 3.8 2.8 3.0 1.7 3.3 2.5 3.7 3.0 1.8 3.6
1.2 3.3 2.8 3.1 2.0 3.2 3.2 2.9 2.0 1.7 2.2 2.8 3.1 3.4 1.9 1.1
1.8 2.6 2.9 3.0 2.7 3.8 2.8 2.8 2.4 1.8 3.2 2.9 3.1 2.5 1.9 2.9
1.9 3.2 3.0 3.9 2.7 4.3 2.6 2.9 2.2 1.9 3.3 2.4 2.8 3.2 1.9 1.8
2.3 3.2 3.0 3.5 2.1 3.5 2.3 2.7 2.5 1.6 3.6 2.5 3.8 2.4 2.5 1.7
2.2 2.9 2.3 3.3 2.1 3.9 3.0 2.9 1.2 2.3 3.3 3.1 2.2 2.8 2.7 1.9
2.2 3.3 3.1 2.5 1.5 4.3 3.9 3.9 2.1 1.7 3.1 3.0 2.8 3.0 2.7 2.2
1.7 3.1 2.3 2.4 2.1 3.8 3.3 3.5 1.4 2.4 2.7 2.4 3.5 3.0 1.4 2.0
2.4 3.2 2.8 3.3 1.5 4.0 3.0 3.5 2.4 1.8 3.3 2.8 3.6 2.9 2.2 2.4
2.1 3.2 2.7 2.6 2.0 3.8 2.9 3.2 1.4 1.6 3.8 3.2 3.3 3.7 1.4 2.0
2.0 3.0 3.1 3.2 1.9 3.8 2.8 2.9 2.2 2.2 3.6 3.0 2.5 2.4 1.7 2.2
2.4 3.0 2.5 3.0 2.3 4.2 2.8 3.1 2.3 2.1 2.9 3.4 3.2 3.0 2.2 1.9
1.8 2.7 2.7 3.2 2.4 3.4 2.5 3.3 2.5 1.5 2.9 2.5 3.3 3.8 2.1 2.0
1.8 3.4 2.8 3.1 2.1 4.3 2.7 3.4 2.7 2.5 3.1 2.3 3.1 3.4 1.8 2.3
2.0 3.7 2.7 3.0 2.1 4.8 3.2 3.0 1.9 2.1 2.6 2.4 2.9 2.6 2.0 1.5
1.8 2.9 2.9 3.1 1.8 3.9 3.8 3.4 2.1 1.8 4.0 2.4 2.8 3.7 2.9 2.9
                               
Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Fundamentals of Datawarehouse
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education