tangential acceleration

icon
Related questions
Question
Racing drivers experience large g-forces when driving fast round corners. One racing driver is driving a car in a circular ring which is 116 m in diameter. At one instant, his total acceleration is 12.6 m/s2 with a direction of 29 relative to the tangent. I think you have to draw a triangle and use Pythagoras to get ar and at a) At this instant,... i) what is the driver's radial acceleration? m/s2 ii) what is the driver's tangential acceleration? m/s2 b) Starting from the instant described above, and maintaining the same tangential acceleration, how long does it take the driver and car to complete one more complete lap? s (Hint: first find either initial angular or linear velocity.)
EXERSCI 203 Formula Sheet
Linear Kinematics
Angular Kinematics
Linear Kinetics
Angular Kinetics
v =
স্বাধ স্বাধ
Ax x-xi
Δθ θα θε
W =
ΣΕ = ma
Δε
ΣΜ = Ια
tf-ti
At
tf-ti
Δν
V₁ - Vi
Δω
W₁ - Wi
nox
no a f
ā =
At
v = v₁ + at
Ax = (0 +70%) t
2
1
no 4 Ax = vot + ₁₁₂at²
w = w₁ + at
A0 =
α =
F. At = m(v-vi)
tf-ti
Δε
tf-ti
M. At = I(wf-w₁)
p = mv
=(0-5000) t
W = F.d
H = Iw
W = M.0
1
A0 =
wot+at²
E₁ = mg (Ah)
M = Fd₁
mv²
Iw²
no t
v² = v² + 2a (Ax)
w² = w² + 2α (A0)
Ek
Ek =
2
2
nt
V₁ =
Xi+1-xi-1
2h
kx²
kᎾ 2
s = re
Ee
=
Ee =
2
2
Xi-1-2x + xi+1
a₁ =
V₁ = rw
P = Fv
P = Mw
h²
highest point
(v₁ sin 0)²
in proj mot
Yapex Yi-
a₁ = ra
1 =
2g
- Σ
I = ICM + md²
i=1
time of flighty-y₁ = (v₁ sin 0)t; +gt
1
v
ay =
w²r
quadratic
formula
r
|a Totall
=
Other Kinematics
FFT <HSFN
*ob = xoa + xab
FFT = UkFN
XCOM
CoApp²
Vdist=
Vprox + Vdist prox
FD
e = -
2
Other Kinetics
a²+a Hsegment = Hlocal + Hremote = ICOMSWs + mr²wg
m₁-m2
`m₁ + m²
Σ=1 mixi
Σ=1 mi
v½₁₂- v₁'
V2 - V1
2m2
i=1
Pixi
hbounced
hdropped
m₁ + m₂
-Σ
41,2 =
-b±√b² - 4ac
2a
Vterm =
2mg
CDAp
XCOM
Σ=1 mixi
n
i=1
mi
Σ
Pixi
i=1
F
Mc
Material Properties
F = kx
σ = -
Отах
A
1
A = π(R² -²)
π(R4-4)
π(R4-4)
Tr
1 =
T =
4
2
J
επ
x
σ
1
VQ
E =
I =
-bh3
Tmax
E
Ib
Transcribed Image Text:EXERSCI 203 Formula Sheet Linear Kinematics Angular Kinematics Linear Kinetics Angular Kinetics v = স্বাধ স্বাধ Ax x-xi Δθ θα θε W = ΣΕ = ma Δε ΣΜ = Ια tf-ti At tf-ti Δν V₁ - Vi Δω W₁ - Wi nox no a f ā = At v = v₁ + at Ax = (0 +70%) t 2 1 no 4 Ax = vot + ₁₁₂at² w = w₁ + at A0 = α = F. At = m(v-vi) tf-ti Δε tf-ti M. At = I(wf-w₁) p = mv =(0-5000) t W = F.d H = Iw W = M.0 1 A0 = wot+at² E₁ = mg (Ah) M = Fd₁ mv² Iw² no t v² = v² + 2a (Ax) w² = w² + 2α (A0) Ek Ek = 2 2 nt V₁ = Xi+1-xi-1 2h kx² kᎾ 2 s = re Ee = Ee = 2 2 Xi-1-2x + xi+1 a₁ = V₁ = rw P = Fv P = Mw h² highest point (v₁ sin 0)² in proj mot Yapex Yi- a₁ = ra 1 = 2g - Σ I = ICM + md² i=1 time of flighty-y₁ = (v₁ sin 0)t; +gt 1 v ay = w²r quadratic formula r |a Totall = Other Kinematics FFT <HSFN *ob = xoa + xab FFT = UkFN XCOM CoApp² Vdist= Vprox + Vdist prox FD e = - 2 Other Kinetics a²+a Hsegment = Hlocal + Hremote = ICOMSWs + mr²wg m₁-m2 `m₁ + m² Σ=1 mixi Σ=1 mi v½₁₂- v₁' V2 - V1 2m2 i=1 Pixi hbounced hdropped m₁ + m₂ -Σ 41,2 = -b±√b² - 4ac 2a Vterm = 2mg CDAp XCOM Σ=1 mixi n i=1 mi Σ Pixi i=1 F Mc Material Properties F = kx σ = - Отах A 1 A = π(R² -²) π(R4-4) π(R4-4) Tr 1 = T = 4 2 J επ x σ 1 VQ E = I = -bh3 Tmax E Ib
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer