Take the Laplace transform of the following initial value and solve for Y(s) = L{y(t)}: sin(π ) , 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Need help with this cal-4 question I got...

(1/(pi^2-9))((sin(3t)/3)-sin(pit)/pi)-((sin(3(t-1))/3)-(sin(pi(t-1))/pi))step(t-1)

but that was in correct.

Take the Laplace transform of the following initial value and solve for Y(s) = L{y(t)}:
sin(π ) , 0<t<1
0,
y" + 9y =
y(0) = 0, y'(0) = 0
1<t
Y(s) = (1+e^(-s))pi/((s^2+9)(s^2+pi^2))
. Hint: write the right hand side in terms of the
Heaviside function.
Now find the inverse transform to find y(t)
(1/(pi^2-9)((sin(3t)/3)-sin(pit)/pi)-((sin(3(t-1))/3)-(sin
. (Use step(t-c) for
uc(t) .) Note:
1
1
(s2 + 7²)(s² + 9)
9
s² + 9
s2 + 72
Transcribed Image Text:Take the Laplace transform of the following initial value and solve for Y(s) = L{y(t)}: sin(π ) , 0<t<1 0, y" + 9y = y(0) = 0, y'(0) = 0 1<t Y(s) = (1+e^(-s))pi/((s^2+9)(s^2+pi^2)) . Hint: write the right hand side in terms of the Heaviside function. Now find the inverse transform to find y(t) (1/(pi^2-9)((sin(3t)/3)-sin(pit)/pi)-((sin(3(t-1))/3)-(sin . (Use step(t-c) for uc(t) .) Note: 1 1 (s2 + 7²)(s² + 9) 9 s² + 9 s2 + 72
HW9 #8
y"+y={sinlTE)
%3D
o therwise
y both sides
g? L-s(0)-O + L= (1+es) $ T
%3D
+ TT?
(s*+1) L= (Ite=)T
%3D
regulor 1 second deley
sHint r
%3D
1+,5
Pequlat
(sinlt) - F
(sin(t-1)
(1-72H
+ sin (T(E-)) ) • HCE-)
1 secoad delay
Transcribed Image Text:HW9 #8 y"+y={sinlTE) %3D o therwise y both sides g? L-s(0)-O + L= (1+es) $ T %3D + TT? (s*+1) L= (Ite=)T %3D regulor 1 second deley sHint r %3D 1+,5 Pequlat (sinlt) - F (sin(t-1) (1-72H + sin (T(E-)) ) • HCE-) 1 secoad delay
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,