Tabular representations for the functions f, g, and h are given below. Write g(x) and h(x) as transformations of f(x). 2 x 1 0 1 2 f(x) 2 - 1 1 2 -3 -2 0 1 - 2 - 1 1 2 - 2 1 2 0 3 4 g(x) = h(x) = 8 g(x) X h (x) AJ 45 Ay A₂ 1 1 3 -1 3 0 -1

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
### Function Transformations

The following tables provide the values of the functions \( f \), \( g \), and \( h \) for specific values of \( x \). Your task is to express \( g(x) \) and \( h(x) \) as transformations of \( f(x) \).

#### Function \( f \)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
x & -2 & -1 & 0 & 1 & 2 \\
\hline
f(x) & -2 & -1 & -3 & 1 & 2 \\
\hline
\end{array}
\]

#### Function \( g \)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
x & -3 & -2 & -1 & 0 & 1 \\
\hline
g(x) & -2 & -1 & -3 & 1 & 2 \\
\hline
\end{array}
\]

#### Function \( h \)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
x & -2 & -1 & 0 & 1 & 2 \\
\hline
h(x) & 0 & 1 & -1 & 3 & 4 \\
\hline
\end{array}
\]

### Transformations

To determine the transformations:

1. **For \( g(x) \):**
   - Notice how the values of \( g(x) \) match those of \( f(x) \) for different \( x \) values.
   - You will need to identify the transformation that maps \( x\) to the new \( x \)-values in the table for \( g(x) \).

2. **For \( h(x) \):**
   - Compare the values of \( h(x) \) with those of \( f(x) \).
   - Identify how \( f(x)\) is altered (translated, stretched, reflected, etc.) to match the values of \( h(x) \).

Use the space below to enter the transformations of \( f(x) \):

\<form>
  \( g(x) =\) <input type="text" name="g_transformation"> <br><br>
Transcribed Image Text:### Function Transformations The following tables provide the values of the functions \( f \), \( g \), and \( h \) for specific values of \( x \). Your task is to express \( g(x) \) and \( h(x) \) as transformations of \( f(x) \). #### Function \( f \) \[ \begin{array}{|c|c|c|c|c|c|} \hline x & -2 & -1 & 0 & 1 & 2 \\ \hline f(x) & -2 & -1 & -3 & 1 & 2 \\ \hline \end{array} \] #### Function \( g \) \[ \begin{array}{|c|c|c|c|c|c|} \hline x & -3 & -2 & -1 & 0 & 1 \\ \hline g(x) & -2 & -1 & -3 & 1 & 2 \\ \hline \end{array} \] #### Function \( h \) \[ \begin{array}{|c|c|c|c|c|c|} \hline x & -2 & -1 & 0 & 1 & 2 \\ \hline h(x) & 0 & 1 & -1 & 3 & 4 \\ \hline \end{array} \] ### Transformations To determine the transformations: 1. **For \( g(x) \):** - Notice how the values of \( g(x) \) match those of \( f(x) \) for different \( x \) values. - You will need to identify the transformation that maps \( x\) to the new \( x \)-values in the table for \( g(x) \). 2. **For \( h(x) \):** - Compare the values of \( h(x) \) with those of \( f(x) \). - Identify how \( f(x)\) is altered (translated, stretched, reflected, etc.) to match the values of \( h(x) \). Use the space below to enter the transformations of \( f(x) \): \<form> \( g(x) =\) <input type="text" name="g_transformation"> <br><br>
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education