TABLE 4.6 MOS Transistor Parameters NMOS DEVICE PMOS DEVICE VTO +0.75 V -0.75 V 0.75 V 0.5/V 20F 0.6 V 0.6 V K' 100 μΑ/V2 40 μ.Α/V Eox =3.9ɛ, and Es =11.7ɛ, where ɛ, =8.854 × 10-14 F/cm %3D 44 Calculate K, for an NMOS transistor with u, = 500 cm²/V · s for an oxide thickness of (a) 40 nm, (b) 20 nm, (c) 10 nm, and (d) 5 nm.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question

2.    Text Problems 4.4 and 4.8 for NMOS and Text Problem 4.47 for PMOS Some additional basic calculations to provide experience in units and nomenclature. Organize your results in a table. Page 160 (NMOS) and 161 (PMOS) has a table defining the relationships for key FET model parameters.

**MOS Transistor Parameters**

**Table 4.6** outlines the parameters for NMOS and PMOS devices:
- **NMOS Device:**
  - \( V_{T0} = +0.75 \, V \)
  - \( \gamma = 0.75 \sqrt{V} \)
  - \( 2\phi_F = 0.6 \, V \)
  - \( K' = 100 \, \mu A/V^2 \)

- **PMOS Device:**
  - \( V_{T0} = -0.75 \, V \)
  - \( \gamma = 0.5 \sqrt{V} \)
  - \( 2\phi_F = 0.6 \, V \)
  - \( K' = 40 \, \mu A/V^2 \)

The permittivities are given as:
- \( \varepsilon_{ox} = 3.9\varepsilon_0 \) and \( \varepsilon_s = 11.7\varepsilon_0 \) where \( \varepsilon_0 = 8.854 \times 10^{-14} \, F/cm \).

---

**Exercises:**

4.4. **NMOS Transistor Calculation:**
   - Calculate \( K'_n \) for an NMOS transistor with \( \mu_n = 500 \, cm^2/V \cdot s \) for an oxide thickness of:
     - (a) 40 nm
     - (b) 20 nm
     - (c) 10 nm
     - (d) 5 nm

4.8. **NMOS Transistor Parameter \( K_n \) Calculation:**
   - Given \( K'_n = 200 \, \mu A/V^2 \), find the value of \( K_n \) for:
     - \( W = 60 \, \mu m \), \( L = 3 \, \mu m \)
     - \( W = 10 \, \mu m \), \( L = 0.25 \, \mu m \)
     - \( W = 3 \, \mu m \), \( L = 40 \, nm \)

4.3 **PMOS Transistor Calculation:**
   - Calculate \( K'_p \) for a PMOS transistor with \( \mu
Transcribed Image Text:**MOS Transistor Parameters** **Table 4.6** outlines the parameters for NMOS and PMOS devices: - **NMOS Device:** - \( V_{T0} = +0.75 \, V \) - \( \gamma = 0.75 \sqrt{V} \) - \( 2\phi_F = 0.6 \, V \) - \( K' = 100 \, \mu A/V^2 \) - **PMOS Device:** - \( V_{T0} = -0.75 \, V \) - \( \gamma = 0.5 \sqrt{V} \) - \( 2\phi_F = 0.6 \, V \) - \( K' = 40 \, \mu A/V^2 \) The permittivities are given as: - \( \varepsilon_{ox} = 3.9\varepsilon_0 \) and \( \varepsilon_s = 11.7\varepsilon_0 \) where \( \varepsilon_0 = 8.854 \times 10^{-14} \, F/cm \). --- **Exercises:** 4.4. **NMOS Transistor Calculation:** - Calculate \( K'_n \) for an NMOS transistor with \( \mu_n = 500 \, cm^2/V \cdot s \) for an oxide thickness of: - (a) 40 nm - (b) 20 nm - (c) 10 nm - (d) 5 nm 4.8. **NMOS Transistor Parameter \( K_n \) Calculation:** - Given \( K'_n = 200 \, \mu A/V^2 \), find the value of \( K_n \) for: - \( W = 60 \, \mu m \), \( L = 3 \, \mu m \) - \( W = 10 \, \mu m \), \( L = 0.25 \, \mu m \) - \( W = 3 \, \mu m \), \( L = 40 \, nm \) 4.3 **PMOS Transistor Calculation:** - Calculate \( K'_p \) for a PMOS transistor with \( \mu
**NMOS Transistor Mathematical Model Summary**

Equations (4.25) through (4.29) represent the complete model for the \( i-v \) behavior of the NMOS transistor. 

**For all regions:**
- \( K_n = K_n' \frac{W}{L} \) 
- \( K_n' = \mu_n C_{ox} \)
- \( i_G = 0 \)
- \( i_B = 0 \) \hfill (4.25)

**Cutoff region:**
- \( i_D = 0 \) for \( v_{GS} \leq V_{TN} \) \hfill (4.26)

**Triode region:**
\[ 
i_D = K_n \left( v_{GS} - V_{TN} - \frac{v_{DS}}{2} \right) v_{DS} \quad \text{for} \quad v_{GS} - V_{TN} \geq v_{DS} \geq 0 
\] \hfill (4.27)

**Saturation region:**
\[ 
i_D = \frac{K_n}{2} (v_{GS} - V_{TN})^2 (1 + \lambda v_{DS}) \quad \text{for} \quad v_{DS} \geq (v_{GS} - V_{TN}) \geq 0 
\] \hfill (4.28)

**Threshold voltage:**
\[ 
V_{TN} = V_{T0} + \gamma \left( \sqrt{v_{SB} + 2\phi_F} - \sqrt{2\phi_F} \right) 
\] \hfill (4.29)

\( V_{TN} > 0 \) for enhancement-mode NMOS transistors. Depletion-mode NMOS devices can also be fabricated, and \( V_{TN} \leq 0 \) for these transistors.

**PMOS Transistor Mathematical Model Summary**

Equations (4.30) through (4.34) represent the complete model for the \( i-v \) behavior of the PMOS transistor. 

**For all regions:**
- \( K_p = K_p' \frac{W}{L} \)
- \( K_p' = \mu_p C_{ox} \)
- \( i_G
Transcribed Image Text:**NMOS Transistor Mathematical Model Summary** Equations (4.25) through (4.29) represent the complete model for the \( i-v \) behavior of the NMOS transistor. **For all regions:** - \( K_n = K_n' \frac{W}{L} \) - \( K_n' = \mu_n C_{ox} \) - \( i_G = 0 \) - \( i_B = 0 \) \hfill (4.25) **Cutoff region:** - \( i_D = 0 \) for \( v_{GS} \leq V_{TN} \) \hfill (4.26) **Triode region:** \[ i_D = K_n \left( v_{GS} - V_{TN} - \frac{v_{DS}}{2} \right) v_{DS} \quad \text{for} \quad v_{GS} - V_{TN} \geq v_{DS} \geq 0 \] \hfill (4.27) **Saturation region:** \[ i_D = \frac{K_n}{2} (v_{GS} - V_{TN})^2 (1 + \lambda v_{DS}) \quad \text{for} \quad v_{DS} \geq (v_{GS} - V_{TN}) \geq 0 \] \hfill (4.28) **Threshold voltage:** \[ V_{TN} = V_{T0} + \gamma \left( \sqrt{v_{SB} + 2\phi_F} - \sqrt{2\phi_F} \right) \] \hfill (4.29) \( V_{TN} > 0 \) for enhancement-mode NMOS transistors. Depletion-mode NMOS devices can also be fabricated, and \( V_{TN} \leq 0 \) for these transistors. **PMOS Transistor Mathematical Model Summary** Equations (4.30) through (4.34) represent the complete model for the \( i-v \) behavior of the PMOS transistor. **For all regions:** - \( K_p = K_p' \frac{W}{L} \) - \( K_p' = \mu_p C_{ox} \) - \( i_G
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Amplitude Modulation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,