Table 11B.1 Moments of inertia* I= 4m,R m 1. Diatomic molecules m. R Im u= R 2. Triatomic linear rotors I=m,R*+m_R* m. R R' m. m (m,R-m_R') m I= 2m, R *f(e)=1-cose, f,(@)=1+2cost; in each case, m is the total mass of the molecule. R. m 3. Symmetric rotors 1=2m, f,(@)R? me 1=m,f,(e)R (m, +m,)f,(e)R* R m R (3m, +m, )R +6m, R+f,(@)}R m 4=2m,f,(@)R² 1=mf,(@)R m. m m 1=4m,R m. I_=2m,R² +2%¸R°² R m. m. R mc 4. Spherical rotors m I=#m,R m m
Table 11B.1 Moments of inertia* I= 4m,R m 1. Diatomic molecules m. R Im u= R 2. Triatomic linear rotors I=m,R*+m_R* m. R R' m. m (m,R-m_R') m I= 2m, R *f(e)=1-cose, f,(@)=1+2cost; in each case, m is the total mass of the molecule. R. m 3. Symmetric rotors 1=2m, f,(@)R? me 1=m,f,(e)R (m, +m,)f,(e)R* R m R (3m, +m, )R +6m, R+f,(@)}R m 4=2m,f,(@)R² 1=mf,(@)R m. m m 1=4m,R m. I_=2m,R² +2%¸R°² R m. m. R mc 4. Spherical rotors m I=#m,R m m
Related questions
Question
Confirm the expression given in Table 11B.1 for the moment of inertia of a linear ABC molecule. Hint: Begin by locating the centre of mass.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images