Table 11B.1 Moments of inertia* I= 4m,R m 1. Diatomic molecules m. R Im u= R 2. Triatomic linear rotors I=m,R*+m_R* m. R R' m. m (m,R-m_R') m I= 2m, R *f(e)=1-cose, f,(@)=1+2cost; in each case, m is the total mass of the molecule. R. m 3. Symmetric rotors 1=2m, f,(@)R? me 1=m,f,(e)R (m, +m,)f,(e)R* R m R (3m, +m, )R +6m, R+f,(@)}R m 4=2m,f,(@)R² 1=mf,(@)R m. m m 1=4m,R m. I_=2m,R² +2%¸R°² R m. m. R mc 4. Spherical rotors m I=#m,R m m

icon
Related questions
Question

Confirm the expression given in Table 11B.1 for the moment of inertia of a linear ABC molecule. Hint: Begin by locating the centre of mass.

Table 11B.1 Moments of inertia*
I= 4m,R
m
1. Diatomic molecules
m.
R
Im
u=
R
2. Triatomic linear rotors
I=m,R*+m_R*
m.
R
R'
m.
m
(m,R-m_R')
m
I= 2m, R
*f(e)=1-cose, f,(@)=1+2cost; in each case, m is the total mass of the molecule.
R.
m
3. Symmetric rotors
1=2m, f,(@)R?
me
1=m,f,(e)R
(m, +m,)f,(e)R*
R
m
R
(3m, +m, )R
+6m, R+f,(@)}R
m
4=2m,f,(@)R²
1=mf,(@)R
m.
m
m
1=4m,R
m.
I_=2m,R² +2%¸R°²
R
m.
m.
R
mc
4. Spherical rotors
m
I=#m,R
m
m
Transcribed Image Text:Table 11B.1 Moments of inertia* I= 4m,R m 1. Diatomic molecules m. R Im u= R 2. Triatomic linear rotors I=m,R*+m_R* m. R R' m. m (m,R-m_R') m I= 2m, R *f(e)=1-cose, f,(@)=1+2cost; in each case, m is the total mass of the molecule. R. m 3. Symmetric rotors 1=2m, f,(@)R? me 1=m,f,(e)R (m, +m,)f,(e)R* R m R (3m, +m, )R +6m, R+f,(@)}R m 4=2m,f,(@)R² 1=mf,(@)R m. m m 1=4m,R m. I_=2m,R² +2%¸R°² R m. m. R mc 4. Spherical rotors m I=#m,R m m
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions