T2.3: Prove that there exists a connected graph with degrees d₁ ≥ d₂ >> dn if and only if d1, d2,..., dn is graphic, d ≥ 1 and di≥2n2. That is, some graph having degree sequence with these conditions is connected. Hint - Do not attempt to directly prove this using Erdos-Gallai conditions. Instead work with a realization and show that 2-switches can be used to make a connected graph with the same degree sequence. Facts that can be useful: a component (i.e., connected) with n₁ vertices and at least n₁ edges has a cycle. Note also that a 2-switch using edges from different components of a forest will not necessarily reduce the number of components. Make sure that you justify that your proof has a 2-switch that does decrease the number of components.
T2.3: Prove that there exists a connected graph with degrees d₁ ≥ d₂ >> dn if and only if d1, d2,..., dn is graphic, d ≥ 1 and di≥2n2. That is, some graph having degree sequence with these conditions is connected. Hint - Do not attempt to directly prove this using Erdos-Gallai conditions. Instead work with a realization and show that 2-switches can be used to make a connected graph with the same degree sequence. Facts that can be useful: a component (i.e., connected) with n₁ vertices and at least n₁ edges has a cycle. Note also that a 2-switch using edges from different components of a forest will not necessarily reduce the number of components. Make sure that you justify that your proof has a 2-switch that does decrease the number of components.
Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter3: Functions And Graphs
Section3.3: Lines
Problem 13E
Related questions
Question
![T2.3: Prove that there exists a connected graph with degrees d₁ ≥ d₂ >> dn if and only
if d1, d2,..., dn is graphic, d ≥ 1 and di≥2n2. That is, some graph having degree
sequence with these conditions is connected.
Hint - Do not attempt to directly prove this using Erdos-Gallai conditions. Instead work with a
realization and show that 2-switches can be used to make a connected graph with the same degree
sequence. Facts that can be useful: a component (i.e., connected) with n₁ vertices and at least
n₁ edges has a cycle. Note also that a 2-switch using edges from different components of a forest
will not necessarily reduce the number of components. Make sure that you justify that your proof
has a 2-switch that does decrease the number of components.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4a1c925e-790f-448e-9276-e5adcf0e8758%2Fe62e8a6d-6080-41f4-b785-85bd3906718e%2F8ev9f6o_processed.png&w=3840&q=75)
Transcribed Image Text:T2.3: Prove that there exists a connected graph with degrees d₁ ≥ d₂ >> dn if and only
if d1, d2,..., dn is graphic, d ≥ 1 and di≥2n2. That is, some graph having degree
sequence with these conditions is connected.
Hint - Do not attempt to directly prove this using Erdos-Gallai conditions. Instead work with a
realization and show that 2-switches can be used to make a connected graph with the same degree
sequence. Facts that can be useful: a component (i.e., connected) with n₁ vertices and at least
n₁ edges has a cycle. Note also that a 2-switch using edges from different components of a forest
will not necessarily reduce the number of components. Make sure that you justify that your proof
has a 2-switch that does decrease the number of components.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning