t X = X₁ + X₂ = eAtc + eAt CA: ['e to X(t) = Find the general solution of the given system. ở)x + (sinh(Đ)) X cosh(t) X'= e-ASF(s) ds 0 (5)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Equation for General Solution**

The general solution of a linear differential equation system is given by:

\[ \mathbf{X} = \mathbf{X}_c + \mathbf{X}_p = e^{At}\mathbf{C} + e^{At} \int_{t_0}^{t} e^{-As} \mathbf{F}(s) \, ds \]

**Problem Statement**

Find the general solution of the given system:

\[
\mathbf{X}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{X} + \begin{pmatrix} \sinh(t) \\ \cosh(t) \end{pmatrix}
\]

**Solution Form**

\[ \mathbf{X}(t) = \boxed{} \]

**Explanation:**

- \(\mathbf{X} = \mathbf{X}_c + \mathbf{X}_p\) represents the complete solution, consisting of the complementary solution \(\mathbf{X}_c\) and the particular solution \(\mathbf{X}_p\).
- The matrix \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\) is the system matrix for the homogeneous part.
- The vector \(\begin{pmatrix} \sinh(t) \\ \cosh(t) \end{pmatrix}\) functions as the non-homogeneous part of the system.
Transcribed Image Text:**Equation for General Solution** The general solution of a linear differential equation system is given by: \[ \mathbf{X} = \mathbf{X}_c + \mathbf{X}_p = e^{At}\mathbf{C} + e^{At} \int_{t_0}^{t} e^{-As} \mathbf{F}(s) \, ds \] **Problem Statement** Find the general solution of the given system: \[ \mathbf{X}' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{X} + \begin{pmatrix} \sinh(t) \\ \cosh(t) \end{pmatrix} \] **Solution Form** \[ \mathbf{X}(t) = \boxed{} \] **Explanation:** - \(\mathbf{X} = \mathbf{X}_c + \mathbf{X}_p\) represents the complete solution, consisting of the complementary solution \(\mathbf{X}_c\) and the particular solution \(\mathbf{X}_p\). - The matrix \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\) is the system matrix for the homogeneous part. - The vector \(\begin{pmatrix} \sinh(t) \\ \cosh(t) \end{pmatrix}\) functions as the non-homogeneous part of the system.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,