T (b) Use a triple integral to find the volume of the solid above z √√3x2 + 3y2 and below z = 6-1² - y². (Evaluate the integral). √812434² V: SSS dzdy dx 6-1²-² וייט){UTC] = 27T 531 +

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
How would I find this triple integral
יוויטרUTC
(b) Use a triple integral to find the volume of the solid above z = √3x2 + 3y2 and below z = 6 - 1² - y². (Evaluate the
integral).
V:
JJjdzdy dx
2= √3(x²44²) = √3r
2= 6-(x²-4³²) = 6-r²
r√√3=6-1²
r²2+√3-6-0
r= -√3 ± √√3-4111(-6)
2
2,7
531
✓ S r d z drdo
6-r²
+:0
Transcribed Image Text:יוויטרUTC (b) Use a triple integral to find the volume of the solid above z = √3x2 + 3y2 and below z = 6 - 1² - y². (Evaluate the integral). V: JJjdzdy dx 2= √3(x²44²) = √3r 2= 6-(x²-4³²) = 6-r² r√√3=6-1² r²2+√3-6-0 r= -√3 ± √√3-4111(-6) 2 2,7 531 ✓ S r d z drdo 6-r² +:0
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,